ÈÃÄ / Èçäàòåëüñêàÿ äåÿòåëüíîñòü / Æóðíàë «Ôèçèêî-òåõíè÷åñêèå ïðîáëåìû ðàçðàáîòêè ïîëåçíûõ èñêîïàåìûõ» / Íîìåðà æóðíàëà / Íîìåðà æóðíàëà çà 2013 ãîä / 

JMS, Vol. 49, No. 5, 2013


V. N. Oparin, O. M. Usol’tseva, V. N. Semenov, and P. A. Tsoi

The comprehensive experimental studies into the change in the stress–strain state of rock specimens subjected to uniaxial loading until failure, using the automated digital speckle photography analysis shows that when the stress reaches 50% of the limit strength of the specimens, low-frequency micro-deformation processes begin in the specimens under slow (quasi-static) stiff loading. The amplitude of the deformation-wave processes depends on the level of the pre-set macro-loading. Wave packets are plotted for averaged microstrains obtained in sandstone and marble specimens under uniaxial compression. Fourier transforms are used to define the amplitude–frequency characteristics of four micro-deformation stages: elastic, nonlinearly elastic, post-peak and residual strength stages. Elastic oscillations with frequency 0.5–4 Hz appear at the pre-failure stage and continue at the post-peak loading stage.

Rock mass, hierarchical block structure, laboratory experiment, speckle photography method, microstrains, deformation-wave processes

1. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii
v gornom porodovedenii (Canonical Scale for Presentation of Hierarchy in the Science on Rocks), Novosibirsk: Nauka, 2011.
2. Oparin, V.N., Sashurin, A.D., Leont’ev, A.V., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na ob’ekty nedropol’zovaniya (Modern Geodynamics of the Outer Crust of Earth: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.
3. Usol’tseva, O.M., Nazarova, L.A., Tsoi, P.A., Nazarov, L.A., and Semenov, V.N., Genesis and Evolution of Discontinuities in Geomaterials: Theory and a Laboratory Experiment, Journal of Mining Science, 2013, vol. 49, no. 1, pp. 1–7.
4. Oparin, V.N., Scientific Discoveries in Geomechanics at the Turn of a Century and Their Application Outlook, Proc. Int. Conf. Geodynamics and Stress State of the Earth’s Interior, Novosibirsk: IGD SO RAN, 2008.
5. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part I, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 203–222.
6. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part II, Journal of Mining Science, 2013, vol. 49, no. 2, pp. 175–209.
7. Oparin, V.N., Pendulum Waves and “Geomechanical Temperature,” Proc. 2nd Russia–China Conf. Nonlinear Geomechanical–Geodynamic Processes in Deep Mining, Novosibirsk: IGD SO RAN, 2012.
8. Oparin, V.N., Yakovitskaya, G.N., Vostretsov, A.G., Seryakov, V.M., and Krivetsky, A.V., Mechanical–Electromagnetic Transformations in Rocks on Failure, Journal of Mining Science, 2013, vol. 49, no. 3, pp. 343–356.
9. Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., Relation of Linear Block Dimensions of Rock to Crack Opening in the Structural Hierarchy of Masses, Journal of Mining Science, 1993, vol. 29, no. 3, pp. 197–203.
10. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Seismic Regime, Journal of Mining Science, 2004, vol. 40, no. 4, pp. 321–338.
11. Oparin, V.N., Kozyrev, A.A., Sashurin, A.D., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh sil’nogo tekhnogennogo vozdeistviya (Erath Crust Destruction and Self-Organization in the Areas Exposed to Heavy Impact of Mining), Novosibirsk: SO RAN, 2012.
12. Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., Mine Seismic Data Scanning Method, Dokl. RAN, 1993, vol. 333, no. 6.
13. Yakovitskaya, G.E., Some Features of the Electromagnetic Radiation during Rock Failure, Journal of Mining Science, 2004, vol. 40, no. 3, pp. 236–243.

A. N. Besedina, N. V. Kabychenko, and G. G. Kocharyan

The authors calculate possible errors in characterization of low-magnitude seismicity sources using the Brune model and methods of identification of seismic event energy class and local magnitude. The adequacy of the model has been proved by comparing its results with the recordings of seismic vibrations in the North Ural Bauxite Mine. The errors due to the drastic distortion of the emission spectrum become significant at the distance of 1000 m from the emission source and grow as the distance increases. Cases of great deviations from the similarity law are analyzed based on the actual seismic monitoring in the North Ural Bauxite Mine, in mines in Poland, Finland and Canada, as well as in water basins. It is shown that phenomena due to physical difference of various size fracturing dynamics do not radically change a seismic source capacity. Other causes, due to instrumentation shortcomings or incorrect data interpretation, may result in overestimated seismic energy and scaling-up of low-magnitude seismic events.

Seismic monitoring, induced seismicity, seismic moment, seismic energy, stiffness

1. Mel’nikov, N.N., Kozyrev, A.A., Panin, V.I., et al., Seismichnost’ pri gornykh rabotakh (Seismicity in Mining), Apatity: KNTS RAN, 2002.
2. Malovichko, A.A., Dyagilev, R.A., Shulakov, D.Yu., and Kustov, A.K., Mining-Induced Seismicity in the West Urals, Mining Geophysics Int. Conf. Proc., Saint-Petersburg: VNIMI, 1998.
3. Oparin, V.N., Akinin, A.A., Vostrikov, V.I., et al., Blasting-Induced Deformation Processes in Mines, Geomechanics and Stress State of the Earth’s Interior Int. Conf. Proc., Novosibirsk: IGD SO RAN, 2002.
4. Oparin V. N., et al., Methods and Means of Seismic Monitoring of Mining-Induced Earthquakes and Rock Bursts, Integratsionnye proekty SO RAN (Integration Projects of the Siberian Branch of the Russian Academy of Sciences), Mel’nikov N.N. (Ed.), Novosibirsk: SO RAN, 2010.
5. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Seismic Regime, Journal of Mining Science, 2004, vol. 40, no. 4, pp. 321–338.
6. Nazarov, L.A., Nazarova, L. A. Yaroslavtsev, A.F., et al., Evolution of Stress State ad Induced Seismicity in Operating Mines, Journal of Mining Science, 2011, vol. 47, no. 6, pp. 707–713.
7. Eremenko, V.A., Eremenko, A.A., Rasheva, S.V., and Turuntaev, S.B., Blasting and the Man-Made Seismicity in the Tashtagol Mining Area, Journal of Mining Science, 2009, vol. 45, no. 5, pp. 468–474.
8. Bugaev, E.G., Kishkina, S.B., and Sanina, I.A., Seismological Monitoring of Nuclear-Power Engineering Objects on the East European Platform, Yadern. Radiats. Bezopasn., 2012, vol. 65, no. 3.
9. Malovichko, D.A., Kalebskaya, O.I., Shulakov, D.Yu., and Butyrin, P.G., Local Seismological Monitoring of Karsting, Fiz. Zemli, 2010, no. 1.
10. Malovichko, A.A., Malovichko, D.A., and Dyagilev, R.A., Seismological Monitoring in Mines of the Upper Kama Potash Deposit, Gorny Zh., 2008, no. 10.
11. Aki, K. and Richards, P., Quantitative Seismology, University Science Book, 2nd Edition, 2002.
12. Ide, S. and Beroza, G., Does Apparent Stress Vary with Earthquake Size? Geophys. Res. Lett., 2001, vol. 28.
13. Rautian, T.G., Evaluation of Earthquake Energy at Depths down to 3000 km, Eksp. Seismika, 1964, no. 32.
14. Zemlyatreseniya v Rossii v 2008 (Earthquakes in Russia in 2008), Obninsk: GS RAN, 2010.
15. Brune, J., Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes, J. Geophys. Res., 1970, vol. 75.
16. Madariaga, R., Earthquake Scaling Laws, Extreme Environmental Events: Complexity in Forecasting and Early Warning, R. A. Meyers (Ed.), Springer, 2010.
17. Dobrynina, A.A., Q-Factor of Lithosphere and Earthquake Focus Parameters in the Baikal Rift System, PhD Physics and Mathematics Dissertation, Irkutsk: IZK SO RAN, 2011.
18. Domanski, B. and Gibowicz, S., Comparison of Source Parameters Estimated in the Frequency and Time Domains for Seismic Events at the Rudna Copper Mine, Poland, Acta Geophys, 2008, vol. 56.
19. Urbancic, T.I. and Young, R.P., Space–Time Variations in Source Parameters of Mining-Induced Seismic Events with M < 0, Bull. Seismol. Soc. Am., 1993, vol. 83.
20. Ide, S., Beroza, G.C., Prejean, S.G., and Ellsworth, W.L., Apparent Break in Earthquake Scaling due to Path and Site Effects on Deep Borehole Recordings, J. Geophys. Res., 2003, vol. 108(B5).
21. Yamada, T., Mori, J.J., Ide, S., et al. Stress Drops and Radiated Seismic Energies of Microearthquakes in a South African Gold Mine, J. Geophys. Res., 2007, vol. 112.
22. Oye, V., Bungum, H., and Roth, M., Source Parameters and Scaling Relations for Mining-Related Seismicity within the Pyhasalmi Ore Mine, Finland, Bull. Seismol. Soc. Am., 2005, vol. 95, no 3.
23. Kwiatek, G., Plenkers, K., Dresen, G., et al., Source Parameters of Picoseismicity Recorded at Mponeng Deep Gold Mine, South Africa: Implications for Scaling Relations, Bull. Seismol. Soc. Am., 2011, vol. 101, no. 6.
24. Kanamori, H., Hauksson, E., Hutton, L.K., and Jones, L.M., Determination of Earthquake Energy Release and ML Using TERRAscope, Bull. Seismol. Soc. Am., 1993, vol. 83.
25. Gomberg, J., Felzer, K., and Brodsky, E., Earthquake Dynamic Triggering and Ground Motion Scaling, Proc. of 4th Int. Workshop Statistical Seismology, Kanagawa, Japan, 2006.
26. Kanamori, H. and Brodsky, E.E., The Physics of Earthquakes, Reports on Progress in Physics, 2004, vol. 67.
27. Kocharyan, G.G., Radiating Efficiency of Earthquakes (Example of Geomechanical Interpretation of Seismological Monitoring Data), Dinamicheskie protsessy v geosferakh (Dynamic Processes in Geopsheres), Moscow: GEOS, 2012.
28. Hua, W., Chen, Z., and Zheng, S., Source Parameters and Scaling Relations for Reservoir Induced Seismicity in the Longtan Reservoir Area, PAGEOPH, 2013, vol. 170.
29. Gibowicz, S., Young, R., Talebi, S., and Rawlence, D., Source Parameters of Seismic Events at the Underground Research Laboratory in Manitoba, Canada: Scaling Relations for Events with Moment Magnitude Smaller than 2, Bull. Seismol. Soc. Am., 1991, vol. 81.
30. Kocharyan, G.G., Stiffness of Faulting Zone as a Geomechanical Control Factor for Radiating Efficiency of Earthquakes in the Continental Crust, Dokl. RAS, 2013, vol. 252, no. 1.
31. Kostyuchenko, V.N., Kocharyan, G.G., and Pavlov, D.V., Deformation Characteristics of Interblock Intervals ate Different Scales, Fiz. Mezomekh., 2002, vol. 5, no. 5.

L. A. Nazarova, L. A. Nazarov, M. I. Epov, and I. N. El’tsov

The authors have developed and numerically implemented 3D model of evolution of geomechanical and hydrodynamic fields during deep well drilling. The modeling exercises showed low-permeable zones of irreversible deformations that appear under definitely interrelated rock strength properties, drilling mud pressure and in situ horizontal stresses in the borehole environment. These low-permeable irreversible-deformation zones give rise to angular anisotropy of distribution of water content and drilling mud resistivity in the invaded zone, which greatly affects geophysical logging data and must be taken into account in the logging data inversion.

Rock mass, multi-phase filtration, borehole, stress state, failure, invaded zone, permeability, reservoir, resistivity

1. RF State Standard R 53709–2009. Geophysical Logging, Moscow: Standartinform, 2010.
2. Lyons, W.C. and Plisga, G.J., Standard Handbook of Petroleum and Natural Gas Engineering, Elsevier, 2005.
3. Dakhnov, V.N., Geofizicheskie metody opredeleniya kollektorskikh svoistv i neftegazonasyshcheniya gornykh porod (Geophysical Prospecting of Reservoir Properties and Oil and Gas Content of Rocks), Moscow: Nedra, 1985.
4. Standard kompanii po opredeleniyu kachestva tsementirovaniya obsadnykh kolonn v skvazhinakh i bokovykh stvolakh skvazhin na mestorozhdeniyakh OAO “Rosneft’” (Corporate Standard on Casing String Cementing Quality Control in Wells and Sideholes in Gas-and-Oil Fields of Rosneft JSC), Moscow: OAO NK “Rosneft’,” 2005.
5. Ayala, N.M., Patino, A.H., Torne, J., and Kessler, C., Applications of Geomechanical Models in Northern Mexico Using Information from Boreholes Imaging and Electric Logs to Reduce Drilling Non-Productive Time and to Characterize Fractured Reservoirs, SPWLA 48th Annual Logging Well Symp. Proc., 2007.
6. Kashevarov, A.A., El’tsov, N.I., and Epov, M.I., Geomechanical Modeling of Invaded Zones in Drilling, Prikl. Mekh. Tekh. Fiz., 2003, vol. 44, no. 6.
7. El’tsov, I.N., Nesterova, G.V., and Kashevarov, A.A., Petrophysical Interpretation of Repeated EM Sounding Data in Wells, Geolog. Geofiz., 2011, vol. 52, no. 6.
8. Kalinin, A.G., Burenie neftyanykh i gazovykh skvazhin (Oil and Gas Well Drilling), Moscow: TsentrLitNefteGaz, 2008.
9. Spravochnik (kadastr) fizicheskikh svoistv gornykh porod (Reference Book (Cadastre) of Physical Properties of Rocks), Moscow: Nedra, 1975.
10. Keaney, G. M. J., Meridith, P.G., and Murrel, S. A. F., Laboratory Study of Permeability Evolution in a “Tight” Sandstone under Non-Hydrostatic Stress Conditions, SPE / ISRM EuRock’98, Trondheim: SPE, 1998.
11. Stavrogin, A.N. and Tarasov, B.G., Eksperimental’naya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg: Nauka, 2001.
12. Holt, R.M., Permeability Reduction Induced by a Nonhydrostatic Stress Field, SPE Formation Evaluation, 1990, no. 5.
13. Nazarova, L.A. and Nazarov, L.A., Dilatancy and the Formation and Evolution of Disintegration Zones in the Vicinity of Heterogeneities in a Rock Mass, Journal of Mining Science, 2009, vol. 45, no. 5, pp. 411–419.
14. Nazarov, L.A., Nazarova, L.A., El’tsov, N.I., and Kindyuk, V.A., Rock Mechanics Aspects in Deep Well Drilling, Journal of Mining Science, 2010, vol. 46, no. 6, pp. 593–599.
15. Nazarova, L.A., Nazarov, L.A., Epov, M.I., and El’tsov, I.N., Evolution of Deformation Fields and Permeability Parameters of Rocks in Probable Failure Zones in the Vicinity of Deep Wells, Fiz. Mezomekh., 2010, no. 13.
16. El’tsov, I.N., Nazarov, L.A., Nazarova, L.A., Nesterova, G.V., and Epov, M.I., Geophyscial Logging Data Interpretation Considering Hydrodynamic and Geomechanical Processes in the Invaded Zone, Dokl. RAN, 2012, vol. 12, no. 6.
17. Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., et al., USSR Discovery no. 400, Byull. Izobret., 1992, no. 1.
18. Barton, N., Rock Quality, Seismic Velocity, Attenuation and Anisotropy, Taylor and Francis Group, London, UK, 2007.
19. Rabotnov, Yu.N., Mekhanika deformiruemogo tverdogo tela (Deformable Solid Mechanics), Moscow: Nauka, 1979.
20. Dement’ev, A.D., Nazarov, L.A., and Nazarova, L.A., Prikladnye zadachi teorii uprugosti (Applied Problems of Elastic Theory), Novosibirsk: NGAU, 2002.
21. Heidbach, O., World Stress Map. Available at: http://dc-app3–14.gfz-potsdam.de.
22. Tuefel, L.W., Mac Kinnon, and Robert, J., In Situ Stress and Natural Fracture Distribution at Depth in the Piceance Basin, Colorado: Implications to Stimulation and Production of Low Permeability Gas Reservoirs, 27th U. S. Symp. Rock Mechanics, SME, 1982.
23. Galin, L.A., Plane Elastoplastic Problem, Prikl. Mat. Mekh., 1946, vol. 10, nos. 5 and 6.
24. Randall, M., Conway, M., Salter, G., and Miller, S., Pressure-Dependant Permeability in Shale Reservoirs Implications for Estimated Ultimate Recovery, AAPG Hedberg Conference, Austin, Texas, 2010.
25. Zhu, W., Montesi, L., and Wong, T.-F., Characterizing the Permeability–Porosity Relationship during Compactive Cataclastic Flow, The 42nd U. S. Rock Mechanics Symp., San Francisco: ARMA, 2008.
26. Fatt, I. and Davis, D.H., Reduction in Permeability with Overburden Pressure, Petroleum Transaction, AIME, 1952, no 195.
27. Rhett, D.W. and Teufel, L.W., Effect of Reservoir Stress Path on Compressibility and Permeability of Sandstones, The 67th Annual Tech. Conf. & Exh. Society of Petroleum Engineering, Washington, DC, 1992.
28. Romm, E.S., Fil’tratsionnye svoistva treshchinovatykh gornykh porod (Permeability Properties of Jointy Rocks), Moscow: Nedra: 1966.
29. Van Golf-Racht, T.D., Fundamentals of Fractured Reservoir Engineering, Amsterdam–Oxford–New York: Elsevier, 1982.
30. Nikolaevsky, V.N., Geomekhanika i flyuidodinamika (Geomechanics and Fluid Dynamics), Moscow: Nedra, 1996.
31. Samarsky, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction to the Difference Scheme Theory), Moscow: Nauka, 1971.
32. Cox, A. and Hart, R.B., Plate Tectonics: How It Works, Palo Alto, Calif.: Blackwell Scientific Publications, 1986.
33. Mandl, G., Mechanics of Tectonic Faulting. Models and Basic Concepts, Amsterdam–Oxford–New-York: Elsevier, 1988.
34. Darling, T., Well Logging and Formation Evaluation, Elsevier, 2005.
35. El’tsov, I.N., Kashevarov, A.A., and Epov, M.I., Generalization of the Archie Equation and Types of Radial Electrical Resistivity in the Well Zone, Geofiz. Vestn., 2004, no. 7.

G. Ya. Polevshchikov

The article shows the deformation-wave behavior of geomechanical processes induced by coal production face advance. The enclosing rock mass response to mining is interpreted as the formation of a hierarchy of geomedium elements in the continuum subject to excess elastic energy behind the front of the vertical stress decrease. Parameters of the physical model of the process are given in terms of mine-technical situations.

Geomechanics, production face, coal bed, movement, hierarchy of structures, elastic energy

1. Weber, H., Der Gebirgsdruck als Ursache fur das Auftreten von Schlagwettern, Blasern, Gasausbruchen und Gebirgsschlagen, Gluckauf, 1916.
2. Kanlybaeva, Zh., Zakonomernosti sdvizheniya gornykh porod v massive (Regular Patterns of Rock Mass Movements), Moscow: Nauka, 1968.
3. Chernyak, I.L and Zaidenvarg, V.E., Periodicity of Change in the Stress–Strain Sate of Coal and Rocks ahead of Production Face, Izv, vuzov, Gorny Zh., 1993, no. 3.
4. Yakobi, P., Praktika upravleniya gornym davleniem (Practice of Ground Pressure Control), Moscow: Nedra, 1987.
5. Polevshchikov, G.Ya. and Nazarov, N.Yu., Effect of Displacements in Host Rocks on Methane Saturation Dynamics in an Extraction District, Gorn. Inform.-Analit. Byull., 2001, no. 5.
6. Polevshchikov, G.Ya. and Kozyreva, E.N., Gas-Kinetics Pattern in Rocks under Mining, Gorn. Inform.-Analit. Byull., 2002, no. 11.
7. Polevshchikov, G.Ya., Kozyreva, E.N., and Shinkevich, M.V., Effect of Periodicity of Rock Mass Movements on Methane Saturation Dynamics on Mining Site, Proc. 18th Int. Conf. after S. A. Khristianovich on Deformation and Fracture of Damaged Materials and Dynamic Events in Rocks and in Mine Workings, Simferopol: TNU, 2008.
8. Polevshchikov, G.Ya., Geomechanical Wave Processes in the Dynamics of Methane Saturation of a Mining Area, Proc. Int. Conf. Geodynamics and Stress State of the Earth’s Interior, Novosibirsk: IGD SO RAN, 2010.
9. Polevshchikov, G.Ya. and Plaksin, M.S., Gas-Dynamic Consequences of Zonal Disintegration of Rock Mass around Development Heading, Vestn. Nauch. Tsentra Bezop. Rabot Ugol’n. Prom., 2010, no. 2.
10. Polevshchikov, G.Ya. and Plaksin, M.S., Gas-Dynamic Consequences of Zonal Disintegration of Rock Mass after Development Drivage, Vestn. KuzGTU, 2011, no. 5.
11. Oparin, V.N. and Tanaino A. S., Kanonicheskaya shkala ierarkhicheskikh predstavleniy v gornom porodovedenii (Canonical Scale for Presentation of Hierarchy in the Science of Rocks), Novosibirsk: Nauka, 2011.
12. Kurlenya, M.V. and Oparin, V.N., Problems of Non-Linear Geomechanics. Part I, Journal of Mining Science, 1999, vol. 35, no. 3, pp. 216–230.
13. Ionov, V.N. and Ogibalov, P.M., Napryazhenie v telakh pri impul’snom nagruzhenii (Stress in Bodies under Impulsive Loading), Moscow: Vyssh. shk., 1975.
14. Polevshchikov, G.Ya., Dinamicheskie gazoproyavleniya pri provedenii podgotovitel’nykh i vskryvayushchikh vyrabotok v ugol’nykh shakhtakh (Dynamic Phenomena in Rocks under Development and Opening-Up Drivage in Coal Mines), Kemorovo: IUU SO RAN, 2003.
15. Polevshchikov, G.Ya., Shinkevich, M.V., Leont’eva, E.V., and Cherepov, A.A., Fractal Characteristics of Structuring in Rocks under Change in Pressure on Face Part of Coal Seam under Longwalling, Vestn. Nauch. Tsentra Bezop. Rabot Ugol’n. Prom., 2012, no. 3.
16. Galanin, A.F. and Shinkevich, M.V., Influence of the Structure of Rocks on the Parameters of the Primary Caving of Main Roof in Mechanized Longwalls, Voprosy bezopasnosti truda: sb. nacuh. tr. KuzGTU (Labor Safety Issues: KuzGTU Collection of Scientific Papers), Kemerovo, 2004.
17. Vremennoe rukovodstvo po raschetu pervichnogo i posleduyushchego shagov obrusheniya porod krovli pri razrabotke ugol’nykh plastov dlinnymi stolbami po prostiraniyu v usloviyakh Kuzbassa (Preliminary Guidelines for the Primary and Following Roof Caving in Strike-Line Longwalling in Coal in Terms of Kuzbass), Kemerovo: VostNII, 1973.
18. Pravila okhrany sooruzhenii i prirodnykh ob’ektov ot vrednogo vliyaniya podzemnykh gornykh razrabotok na ugol’nykh mestorozhdeniyakh (Guidance on Conservation of Installations and Natural Bodies from Ill Effect of Underground Coal Mining), Saint-Petersburg, 1998.

E. V. Denisova and A. I. Konurin

Based on the constructed geomechanical model of the pneumatic borer and soil interaction and using the finite element method, the authors solve the problem on the stress state in soil enclosing a moving pneumatic percussion machine, considering variation of physico-mechanical properties of soil. The experimentally measured and calculated relative accelerations of acoustic field depending on the machine orientation in soil are compared.

Pneumatic percussion machine, soil, geomechanical model, finite element method, physico-mechanical properties, wave properties, experiment, resolving power

1. United States patent no. 6,886,644. Appl. no.: 10/224,205. Publ. May 3, 2005.
2. United States patent no. 8,213,264. Appl. no.: 12/656,024. Publ. July 3, 2012.
3. United States patent no. 8,264,909. Appl. no.: 12/698,679. Publ. September 11, 2012.
4. Oparin, V.N., Denisova, E.V., and Konurin, A.I., Test Data on the Acoustic Tracking of an Air-Percussion Machine in Soil, Journal of Mining Science, 2012, vol. 48, no. 4, pp. 765–770.
5. Oparin, V.N., Denisova, E.V., Gavrilov, S.Yu., and Konurin, A.I., Useful Model patent no. 116573. Byull. Izobret., 2012, no. 15.
6. Oparin, V.N., Denisova, E.V., Gavrilov, S.Yu., Konurin, A.I., and Polotnyanko, N.S., Useful Model patent no. 118765. Byull. Izobret., 2012, no. 21.
7. Trubitsyn, V.V. and Chervov, V.V., Monitoring the Motion of a Pneumatic Punch from Oscillations of the Ground, Journal of Mining Science, 1998, vol. 34, no. 4, pp. 375–378.
8. Zienkiewicz, O., The Finite Element Method in Engineering Science, McGraw Hill, 1971.
9. Segerlind, L.J., Applied Finite Element Analysis, 2nd Edition, John Wiley and Sons, 1984.
10. Larin, M., Kabanov, Yu., Khitrykh, D., and Yurchenko, D., Application of ANSYS AUTODYN in Calculation of Blast and Ballistic Impact Protection, ANSYS Advantage. Russian Release, Moscow, 2009.
11. Davydov, V.A. and Bondareva, E.D., Izyskaniya i proektirovanie avtomobil’nykh dorog na mnogoletnemerzlykh gruntakh: ucheb. posoboie (Location and Projecting of Motor Roads on Permafrost Soil: Educational Aid), Omsk: OmPI, 1989/
12. Vasil’ev, Yu.M., Metodicheskie rekomendatsii po ukrepleniyu mestnykh gruntov verkhnei chasti zemplyanogo polotna neorganicheskimi vyazhushchimi (Recommended Practice of Top Roadbed Soil Strengthening by Inorganic Binders), Moscow: SoyuzDorNII, 1977.
13. Amosov, A.A., Dubinsky, Yu.A., and Kopchenova, N.P., Vychislitel’nye metody dlya inzhenerov (Calculation Techniques for Engineers), Moscow: Vyssh. shk., 1994.
14. Izotov, A.S., Mathematical Description of Interaction under Percussion, Int. Conf. Proc. Dynamics and Strength of Mining Machines, Novosibirsk: IGD SO RAN, 2003.
15. Gorbunov-Posadov, M.I., Il’ichev, V.A., Krutov, V.I., et al., Osnovaniya, fundamenty i podzemnye sooruzheniya (Sub-Bases, Foundations and Underground Structures), Sorochan, E.A. and Trofimenkov, Yu.G. (Eds.), Moscow: Stroiizdat, 1985.
16. Denisova, E.V., Neverov, A.A., Gavrilov, S.Yu., and Konurin, A.I., Geomechanical Validation of Experimentally Obtained Parameters of Acoustic Field Induced by a Pneumatic Drill Movement in Soil, Vestn. KuzGTU, 2011, no. 5.


E. N. Sher, I. V. Kolykhalov, and A. M. Mikhailov

The article discusses growth of two successive axially symmetrical hydraulic fractures in line with a well. Shapes of the surfaces of the second hydrofracture that propagates in the stress field initiated by the first hydrofracture are modeled, and the pressure for the second fracture to grow is calculated. The authors assess impact area of the first hydrofracture, analyze options of the second hydrofracture curving and derive formula of the second hydrofracture curving.

Hydraulic fracturing, axially symmetrical fracture, family of fractures, rock pressure

1. Deimbacher, F.X., Economides, M.J., and Jensen, O.K., Generalized Performance of Hydraulic Fractures with Complex Geometry Intersecting Horizontal Wells, SPE 25505, Production Operations Symp. Proc., Oklahoma City, Oklahoma, USA, 1993.
2. Zheltov, Yu.P. and Khristianovich, S.A., Oil Formation Hydrofracturing, Izv. AN SSSR, OTN, 1955, No. 5.
3. Alekssenko, O.P. and Vaisman, A.M., Straight Hydrofracturing in Elastic Plane, Izv. AN SSR. Mekh. Tverd. Tela, 1988, no. 6.
4. Alekseenko, O.P. and Vaisman, A.M., Exact Solution of One Classical Problem on Hydraulic Fracturing, Journal of Mining Science, 2001, vol. 37, no. 5, pp. 493–503.
5. Alekseenko, O.P. and Vaisman, A.M., Simulation of Hydraulic Fracturing of Oil Stratum Adjacent to Plastic Enclosing Rock, Journal of Mining Science, 2001, vol. 37, no. 4, pp. 401–406.
6. Rahman, M.M., Hossain, M.M., et al., Analytical, Numerical and Experimental Investigations of Transverse Fracture Propagation from Horizontal Wells, J. Petroleum Science & Engineering, 2002, vol. 35.
7. Crosby, D.G., Rahman, M.M., et al., Single and Multiple Transverse Fracture Initiation from Horizontal Wells, J. Petroleum Science & Engineering, 2002, vol. 35.
8. Kresse, O., Weng, X., et al., Numerical Modeling of Hydraulic Fractures Interaction in Complex Naturally Fractured Formations, Rock Mechanics and Rock Engineering, 2013, vol. 46.
9. Sneddon, I.N., Fourier Transforms, McGraw Hill, 1951.
10. Slepyan, L.I., Mekhanika treshchin (Mechanics of Fractures), Leningrad: Sudostroenie, 1981.
11. Peach, Ì. and Koehler, J.S., The Forces Exerted on Dislocations and the Stress Fields Produced by Them, Physical Review, 1950, vol. 80, no. 3.
12. Dong, C.Y. and de Pater, C.J., Numerical Implementation of Displacement Discontinuity Method and Its Application in Hydraulic Fracturing, Computer Methods in Applied Mechanics and Engineering, 2001, vol. 191.
13. Crouch, S.L. and Starfield, A.M., Boundary Element Methods in Solid Mechanics, George Allen & Unwin, London, 1983.
14. Sher, E.N. and Kolykhalov, I.V., Propagation of Closely Spaced Hydraulic Fractures, Journal of Mining Science, 2011, vol. 47, no. 6, pp. 741–750.

N. A. Leonenko, G. V. Sekisov, A. Yu. Cheban, S. A. Shemyakin, A. P. Kuz’menko, and I. V. Silyutin

The review of the laser application practices in mining is followed by the discussion of experimental treatment of carbonate rocks by the continuous fiber-optic ytterbium laser radiation at output capability of 600 W. Local disintegration of carbonate rocks is estimated with a view to show the possibility and practicability of the laser-aided means and technologies in mineral mining and processing.

Laser radiation, fiber-optic laser, rocks, cutting energy efficiency, laser radiation rate

1. Panchenko, V.Ya., Lazernye tekhnologii obrabotki materialov: sovremennye problemy fundamental’nykh issledovanii i prikladnykh razrabotok (Laser Technologies of Material Treatment: Current Fundamental and Applied Problems). Moscow: Fizmatlit, 2009.
2. Mukhamedgalieva, A.F., Bondar’, A.M., Ziborova, T.A., Baranov, R.I., and Panin, M.I., Continuous CO2-Laser Radiation Effect on Quartz Minerals and Quartz-Bearing Rocks, Kvant. Elektron., 1975, no. 1.
3. Mukhamedgalieva, A.F., Bondar’, A.M., and Ziborova, T.A., Potash Feldspar KA1Si308 IR Adsorption Spectrum Deformation under ÑÎ2-Laser Radiation, Zh. Tekh. Fiz., 1976, vol. 2, no. 1 
4. Mukhamedgalieva, A.F. and Bondar’, A.M., Laser-Simulated Reactions on the Surface of Quartz and Some Other Minerals, Fiz., Khim., Mekh., 1983, no. 5.
5. Mukhamedgalieva, A.F., Structural Transformations on the Surface of Synthetic and Natural Silicate under Action of IR Laser Radiation, Dr. Phys.-Math. Dissertation, Moscow, 2002.
6. Afanas’ev, Yu.V., Zavestovskaya, I.N., Zvorykin, V.D., Ionin, A.A., Senatsky, Yu.V., and Starodub, A.N., International Forum on Advanced High-Power Lasers and Applications (AHPLA-99), Kvant. Elektron., 2000, vol. 30, no. 5.
7. Golubev, V.S., Laser Macrotechnologies: Current Situation and Development Trends, Perspektivn. Mater., 2005, no. 1.
8. Sigimoto, D. et al., Performance of High Power Lasers for Rock Excavations, Proc. SPIE 3887, 2000.
9. Matsuno, K., High Power Lasers in Japan National Projects, Proc. SPIE 4831, 2003.
10. Brian, C., Gahan, P.E., and Dr. Samih Batarseh, Laser Drilling—Drilling by the Power of Light, Report, Continuation of Fundamental Research and Development, 2003–2004. Available at: www.osti.gov.
11. Graves, R., Metal, Proc. SPIE 3885 159, 2000.
12. Ionin, A.A., High-Power Infrared and Ultraviolet Lasers and Application, Usp. Fiz. Nauk, 2012, vol. 182, no. 7.
13. Graves, R., Ionin, A.A., Klimachev, Yu.M., Mukhamedgalieva, A.F., O’Brien, D., Sinitsyn, D.V., and Zvorykin, V.D., Interaction of Pulsed CO and CO2-Laser Radiation with Rocks, Proc. SPIE, 2000, vol. 4065.
14. O’Brien, D., Graves, R., Zvorykin, V.D., Ionin, A.A., Klimachev, Yu.M., Mukhamedgalieva, A.F., Sinitsyn, D.V., and Terekhov, Yu.V., The Pulsed CO- and ÑÎ2-Laser Interaction with Rocks Typical of Oil Formations. Part II: Gas-Dynamic Processes under Laser-Induced Ablation of Transformation of IR Spectra of Absorption and Reflection in Rocks, Fiz. Khim. Obrab. Mater., 2005, no. 1.
15. Mukhamedgalieva, A.F., Bondar’, A.M., Ionin, A.A., Klimachev, Yu.M., Sinitsyn, D.V., and Zvorykin, V.D., Pulsed CO- and CO2-Laser-Induced Ablation of Quartz, Silicious Minerals and Rocks, Usp. Fiz. Nauk, 2008, no. 4.
16. Dianov, M., Fiber Laser, Usp. Fiz. Nauk, 2004, vol. 174.
17. Strel’tsov, A.P. and Petrovsky, V.N., Selection of Laser Parameters for Quality Cutting, Lazern. Oborud., 2007, no. 3.
18. Zhukov, E.A., Ilyushin, M.A., Kuz’menko, A.P., and Leonenko, N.A., Laser-Aided Initiation of Energy-Saturated Structures, Vestn. Zap. Gorn. Inst., 2001, vol. 148, no. 1.
19. Lenonenko, N.A., Pavlova, N.A., Zhukov, E.A., and Kuz’menko, A.P., RF patent no. 2196122, Byull. Izobret., 2003, no. 1.
20. Shevkun, E.B., Kuz’menko, A.P., Leonenko, N.A., Yatlukova, N.G., and Kuz’menko, N.A., RF patent no. 2255995, Byull. Izobret., 2005, no. 19.
21. Leonenko, N.A., Kuz’menko, A.P., Silyutin, I.V., Rasskazov, I.Yu., Sekisov, G.V., Gurman, M.A., Kapustina, G.G., and Shvets, N.L., RF patent no. 2413779, Byull. Izobret., 2011, no. 7.
22. Kuz’menko, A.P., Leonenko, N.A., Kharchenko, V.I., Kuz’menko, N.A., Silyutin, I.V., and Khrapov, I.V., Thermocapillary Mechanism of Laser Stimulated Agglomeration of Ul-Tradisperse and Colloidal-Ionic Gold, Technical Physics Letters, 2009, vol. 35, no. 9.
23. Kuz’menko, A.P., Rasskazov, I.Yu., Leonenko, N.A., Kapustina, G.G., Silyutin I. V., Li, Q., Kuz’menko, N.A., and Khrapov, I.V., Thermocapillary Extraction and Laser-Induced Agglomeration of Fine Gold out of Mineral and Waste Complexes, Journal of Mining Science, 2011, vol. 47, no. 6, pp. 850–860.
24. Leonenko, N.A., Basis for Laser Optical Systems for Mineral Preparation Flowsheet Control, Gorn. Inform.-Analit. Byull., 2012, no. 4.
25. Leonenko, N.A., Vanina, E.A., Gal’tsov, A.A., Kapustina, G.G., and Silytin, I.V., Laser-Induced Thermoradiation Activation and Formation of Ordered Structures in Dispersed Mineral Media, Fiz. Khim. Obrab. Mater., 2011, no. 2.
26. 2012 Report of the Institute of Gas Technology. Available at: http://www.gastechnology.org/media.godashboard.com/gti/AnnualReport/GTI_AnnualReport2011_fnl_lowres.pdf.
27. Brian C. Gahan, Processing Rock. Available at: http://www.industrial-lasers.com/articles/2005/09/processing-rock.html.


Yu. M. Lekontsev, P. V. Sazhin, O. A. Temiryaeva, A. A. Khoreshok, and S. Yu. Ushakov

Design parameters of a balanced sealing device are substantiated. Different design synchronizers are tested with an eye to ensure joint operation of air sealing devices. The article describes laboratory studies of operation modes of the sealing device and different design synchronizers.

Balanced sealing device, packer, spool-type synchronizer, valve synchronizer

1. Kurlenya, M.V., Aksenov, V.K., Lavrov, N.S., Volkov, Yu.M., Kyutt, O.I., and Yun, R., USSR patent no. 877006, Byull. Izobret., 1981, no. 40.
2. Kurlenya, M.V., Popov, S.N., Yun, R., Aver’yanov, S.F., and Fedorenko, V.K., USSR patent no. 1737116, Byull. Izobret., 1992, no. 20.
3. Klishin, V.I., Lekontsev, Yu.M., and Sazhin, P.V., RF patent no. 2268359, Byull. Izobret., 2006, no. 2.
4. Klishin, V.I., Lekontsev, Yu.M., and Sazhin, P.V., Directed Hydrofracturing Effectivization, Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact Proc., Novosibirsk 2008.
5. Lekontsev, Yu.M., Sazhin, P.V., and Antonyuk, A.I., Practice of the Interval Hydrofracturing to Weaken a Dirt Band in a Coal Seam in the Romanovskaya Mine, Proc. 12th Int. Conf. Natural and Intellectual Reserves of Siberia, Kemerovo, 2010.
6. Lekontsev, Yu.M., Sazhin, P.V., and Ushakov, S.Yu., Dirt Band Weakening in the Romanovskaya Mine Coal Seam by the Interval Hydraulic Fracturing Technique, Ugol’, 2012, no. 1.
7. Lekontsev, Yu.M., Sazhin, P.V., and Ushakov, S.Yu., Interval Hydraulic Fracturing to Weaken Dirt Bands in Coal, Journal of Mining Science, 2012, vol. 48, no. 3, pp. 525–532.

T. M. Kumykova and V. Kh. Kumykov

The authors have studied theoretically and experimentally dynamics of mine hydro-pneumatic accumulators and give grounds for a hydro-pneumatic accumulator design meant for the stable and elevated pressure maintenance in an underground compressed air network as compared to a compressed-air plant.

Hydro-pneumatic accumulator, pneumatic power complex, compressed air, compressed-air network

1. Yamkovsky, G.T., Technical-and-Economic Efficiency of High Air Pressure in Rock Drilling, Izv. vuzov, Gorny Zh., 1976, no. 7.
2. Ivanov, K.I., Latyshev, V.A., and Andreev, V.D., Tekhnika bureniya pri razrabotke mestorozhdenii poleznykh iskopaemykh (Drilling Technique in Mineral Mining), Moscow: Nedra, 1990.
3. Pavlov, V.D. and Miroshnichenko, V.K., Project Development and Operation of Hydro-Pneumatic Accumulators in Finland, Gorny Zh., 1982, no. 6.
4. Kamenev, G.P. and Salmanov, A.V., Project Development and Testing of a Hydro-Pneumatic Accumulator of Compressed Air, Gorny Zh., 1989, no. 12.
5. Lisovsky, G.D. and Kumykova, T.M., Mine Pneumatic Network Mode Stabilization Procedure, Proc. 4th Int. Conf. Science and Education—Key Kazakhstan-2030 Strategy Factor, Karaganda: KarGTU, 2001.
6. Yudaev, B.N., Tekhnicheskaya termodinamika. Teploperedacha (Engineering Thermodynamics. Heat Transmission), Moscow: Vysshaya shkola, 1988.
7. Tseitlin, Yu.A. and Murzin, V.A., Pnevmatichskie ustanovki shakht (Mine Pneumatic Installations), Moscow: Nedra, 1985.
8. Chugeev, R.R., Gidravlika (Hydraulics), Leningrad: Energoizdat, 1982.
9. Kumykova, T.M. and Lisovsky, G.D., Preliminary RK patent for invention no. 15534, Byull. Izobret., 2005, no. 3.
10. Kumykova, T.M. and Kumykov, V.Kh., Preliminary RK patent for invention no. 19314. Byull. Izobret., 2008, no. 4.
11. Kumykova, T.M., Kumykov, V.Kh., and Klaputina, I.N., Innovation RK patent for invention no. 25580, Byull. Izobret., 2012, no. 3.


I. Yu. Rasskazov, G. N. Shkabarnya, and N. G. Shkabarnya

The authors anlyze conditions and factors that influence coal pitwall stability, and substantiate applicability of electrical tomography for pitwall exploration. Experimental studies of physico-mechanical properties of Bikinsky brown-coal pitwall rock mass are reported. The article proposes a procedure for the electrical tomography exploration of weak layers and lentils within geological column.

Electrical tomography, resistivity method, mathematical modeling, resistivity section, brown-coal deposit

1. Shkabarnya, G.N., Options and Prospects of Electrical Tomography in the Detail Surveying of a Geomedium, Geoinzhin., 2006, no. 1.
2. Dahlin, T., The Development of DC Resistivity Imaging Techniques, Computers & Geosciences, 2001, no. 27.
3. Sedykh, A.K., Kainozoiskie riftogennye vpadiny Primor’ya (Cainozoic Rift-Genesis Depressions in the Primorski Krai), Vladivostok: Dal’nauka, 2008.
4. Pravila obespecheniya ustoichivosti otkosov na ugol’nykh razrezakh (Open Pitwall Stability Safety Practice), Saint-Petersburg, VNIMI, 1998.
5. Shkabarnya, N.G., Agoshkov, A.I., Shkabarnya, G.N., Myasnik, V.Ch., and Kalinin, I.V., Electric Prospecting Potential in Estimation of Mining-Induced Sliding Hazard in Open Pit Mines, Gorn. Inform.-Analit. Byull., 2007, no. 9.
6. Loke, M.H., Acworthk, I., and Dahlin, T., A Comparison of Smooth and Blocky Inversion Methods in 2D Electrical Imaging Surveys, Exploration Geophysics, 2003, no. 34.


N. N. Petrov, N. V. Panova, and E. Yu. Grekhneva

The authors illustrate efficient adaptability of aerodynamic characteristics of main mine fans to changes in mine vent modes in the course of mine’s operating life by using fan impellers with replaceable sheet blades of different aerodynamic configurations.

Impeller, blades, adaptation, pressure and capacity requirements, fan efficiency

1. Petrov, N.N. and Kaigorodov, Yu.M., Analysis of the Mine Ventilation Variation, Avtomaticheskoe upravlenie v gornom dele (Automated Control in Mining), Novosibirsk: IGD SO AN SSSR, 1974.
2. Babk, G.A. and Korol’, E.P., Dynamics of Ventilation Modes of Main Mine Fans, Shakhtnye turbomashiny: sb. trudov IGM i TK im. M. M. Fedorova (Mine Turbomachines: Collected Works of M. M. Fedorov Institute of Mining, Mechanical Engineering and Engineering Cybernetics), Donetsk, 1972.
3. Petrov, N.N., Popov, N.A., Batyaev, V.A., et al., Theory and Design of Reversible Axial Fans with Turn in Motion Blades of Impeller, Journal of Mining Science, 1999, vol. 35, no. 5, pp. 519–530.
4. Petrov, N.N. and Kuznetsov, A.S., Selection of Main Mine Fan Equipment, Upravlenie ventilyatsiei i gazodinamicheskimi yavleniyami v shakhtakh (Control of Ventilation and Gas-Dynamic Events in Mines), Novosibirsk. 1977.
5. Petrov, N.N. and Panova, N.V., Strength of Adaptable Blade Ring of Heavy-Duty Axial Mine Fans, Journal of Mining Science, 2013, vol. 49, no. 1, pp. 118–125.


T. A. Ivanova, V. A. Chanturia, and I. G. Zimbovsky

It is proposed to apply nanosize Au and Pt particles to ground mineral particles for the analysis of flotation and adsorptive properties of new reagents. The authors have obtained specimens of pyrite, arsenopyrite and quartz artificially enriched by nanosize gold particles. Reductive adsorption from Na2[PtCl6] and Na[AuCl4] produced pyrrhotine uniformly applied with microsize platinum particles. The article discusses the application range of the proposed techniques and methods of examination of specimens and interaction between reagents and micro- and nanosize gold and platinum particles depending on the conditions of sulfide treatment by the noble metals and on properties of a host mineral. Advanced integrated analysis of interaction between the nitrogen-bearing reagent MTKh and gold confirmed chemically induced selectivity of MTKh towards gold.

Minerals, flotation, sorption, collecting agents, artificial application, platinum, gold, noble metal new growth, collecting agents, microsize and nanosize particles, electron microscopy

1. Chanturia, V.A., Ivanova, T.A., and Koporulina, E.V., Interaction of Sodium Diisobutyl Dithiophosphinate and Platinum in Aqueous Solutions and on Sulphide Surface, Journal of Mining Science, 2009, vol. 45, no. 2, pp. 164–172.
2. Chanturia, V.A., Ivanova, T.A., and Koporulina, E.V., Estimation Procedure for the Efficiency of Interaction between Flotation Reagent and Gold-Containing Pyrite, Tsv. Metally, 2010, no. 8.
3. Tauson, V.L., Ovchinnikova, O.I., Bessarabova, O.I., Smagunov, N.V., and Pastushkova, T.M., Distribution of Gold after Deposition from HAuCl4 Solution on Crystals of Magnetite, Sphalerite and Galena under Reducing Adsorption, Geolog. Geofiz., 2000, vol. 41, no. 10.
4. Gubin, S.P., Yurkov, G.Yu., and Kataeva, N.A., Nanochastitsy blagorodnykh metallov i materialy na ikh osnove (Noble Metal Nanoparticles and Materials Obtained in This Base), Moscow: N. S. Kurnakov IONKh, 2006.
5. Ginzburg, S.I., Gladyshevskaya, K.A., Ezerskaya, N.A., et al., Rukovodstvo po khimicheskomy analizy platinovykh metallov i zolota (Platinum Metals and Gold Chemical Analysis Guide), Moscow: Nauka, 1965.
6. Romanchenko, A.S., Mikhlin, Yu.L., and Makhova, L.V., Gold Nanoparticles Immobilized on Pyrite Surface: Studies by Electron Probe Microscopy, Tunnel Electron Microscopy and X-Ray Photoelectron Spectroscopy, Fiz. Khim. Stekla, 2007, vol. 33, no. 4.
7. Sintez kompleksnykh soedinenii metallov platinovoi gruppy: spravochnik (Synthesis of Platinum Group Metal Compounds: Manual), Moscow: Nauka, 1964.
8. Ershov, B.G., Platinum and Palladium Nanoparticles in Aqueous Solutions, Sovremennye problemy fizicheskoi khimii nanomaterialov (Current Problems in Physical Chemistry of Nanomaterials), Moscow: Granitsa, 2008.
9. Meretukov, M.A., Natural Nanosize Gold Particles, Tsv. Metally, 2006, no. 2.
10. Sviridov, V.V., Vorob’eva, T.N., Gaevskaya, T.V., and Stepanova, L.I., Khimicheskoe osazhdenie metallov iz vodnykh rastvorov (Chemical Deposition of Metals from Water Solutions), Minsk: Universitetskoe Publishing House, 1987.
11. Dykman, L.A., Bogatyrev, V.A., Shchegolev, S.Yu., and Khlebtsov, N.G., Zolotye nanochastitsy. Sintez, svoistva, biomeditsinskoe primenenie (Gold Nanoparticles. Synthesis, Properties, Application in Biomedicine), Moscow: Nauka, 2008.
12. Vlasov, N.G., Ozhogin, D.O., Orlova, N.I., et al., Metody otsenki tekhnologicheskikh svoistv mineralov i ikh povedenie v tekhnologicheskikh protsessakh (Estimation Techniques for Processing Abilities of Minerals and Their Behavior in Process Flows), Petrozavodsk: IG KrNTs RAN, 2012.
13. Chanturia, V.A., Trubetskoy, K.N., Viktorov, V.S., and Bunin, I.Zh., Nanochastitsy v protsessakh razrusheniya i vskrytiya geomaterialov (Nanoparticles in the Processes of Destruction and Unlocking of Geomaterials), Moscow: IPKON RAN, 2006.
14. Chanturia, V.A., Ivanova, T.A., Nedosekina, T.V., Gapchich, A.O., and Zimbovsky, I.G., Patent Decision dated March 16, 2012.

V. A. Ignatkina, V. A. Bocharov, and F. G. D’yachkov

The authors experimentally compared collecting properties of diisobutyl dithiophosphinate (DDP), butyl and isobutyl xanthate, and diisobutyl and dibutyl dithiophosphate relative to pyrite, chalcopyrite and other sulfides. It was found that pyrite adsorption grew in nonfrothing flotation with all the listed collecting agents. The nonfrothing pyrite flotation by DDP showed higher rates of adsorption and flotation as against butyl xanthate. The ratio of DDP and butyl xanthate flotation rate constants was 1.19, which agreed with the ratio of the adsorption rate constants of 1.18 in nonfrothing flotation. The low selectivity of dithiophosphinates toward sulfide ores is explained.

Flotation, pyrite, chalcopyrite, sphalerite, pyrrhotite, aerophine, dithiophosphates, xanthates, adsorption rate constants, surface compounds

1. Kakovsky, I.À., Komkov, V.D., Research of Flotation Properties of Dithiophosphates, Izv. vuzov, Gorny Zh., 1970, no. 11.
2. Leppinen, J., FTIR and Flotation Investigation of Adsorption of Diethyl Dithiophosphate on Sulfide Minerals. Eespoo, 1991.
3. Ryaboy, V.I., Asonchik, K.M., Pol’kin, V.N., et al., Application of Selective Collectors in Copper–Zinc Ores Flotation, Obog. Rud, 2008, no. 3.
4. Bogdanov, O.S., Maksimov, I.I., Podnek, A.K., and Yanis, N.A., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Moscow: Nedra, 1980.
5. Nedosekina, T.V., Glembotsky, A.V., Bekhtle, G.A., and Novgorodova, E.E., Action of Tionocarbamates and Xanthate Combination in Copper–Molybdenum Pyrite-Containing Ore Flotation, Tsv. Metally, 1968, no. 10.
6. Ignatkina, V.A., Bocharov, V.A., Puntsukova, B.T., and Alekseichuk, D.A., Analysis of Selectivity of Thionocarbamate Combinations with Butyl Xanthate and Dithiophosphate, Journal of Mining Science, 2010, vol. 46, no. 3, pp. 324–332.
7. Kultin, B.A., Zimin, A.V., Nemchinova, L.A., et al., Improvement of Ural (Russia) Pyrite Copper–Zinc Ores Dressing Technology, Proc. 26th Int. Mineral Processing Cong., New Delhi, 2012.
8. Ignatkina, V.A., Application of Thiophosphoric Acid Derivatives in Nonferrous Metals Flotation, PLaksin’s Lectures–2012 Proc., Petrozavodsk: KarNTs RAN, 2012.
9. Sorokin, M.M., Flotatsionnye metody obogashcheniya. Khimicheskie osnovy flotatsii: ucheb. posobie (Flotation Methods. Chemical Principles of Flotation: Educational Aid), Moscow: MISiS, 2012.
10. Samygin, V.D., Grigor’ev, P.V., Filippov, L.O., et al., Reactor with Automatic Checkout of Formation Kinetics, Izv. vuzov, Tsvet. Metallurg., 2002, no. 4.
11. Glukhova, N.I., Lavrinenko, A.A., Sarkisova, L.M., and Podgaetsky, A.V., Aerophine 3418A Effect on Pyrrhotite Flotation, Proc. 9th Cong. Mineral Processing Engineers from CIS Countries, Moscow: MISiS, 2013.

T. N. Matveeva, N. K. Gromova, T. A. Ivanova, and V. A. Chanturia

Complexing processes between modified diethyldithiocarbamate (DDC) and copper, iron and gold ions in solution, as well as adsorption of modified solution on auriferous pyrite and arsenopyrite are analyzed using the ultraviolet spectroscopy, scanning electron and laser microscopy. The research shows that modified DDC forms partial water soluble compounds with gold and is selective towards auriferous pyrite and arsenopyrite as compared to xanthate.

Auriferous ores, pyrite, arsenopyrite, modified diethyldithiocarbamate, complexing, adsorption

1. Shubov, L.Ya., Ivankov, S.I., and Shcheglova, N.K., Flotatsionnye reagenty v protsessakh obogashcheniya mineral’nogo syr’ya. Kn. 1 (Flotation Agents in Mineral Beneficiation. Book 1), Moscow: Nedra, 1990.
2. Chanturia, V.A., Matveeva, T.N., Ivanova, T.A., Gromova, N.K., and Lantsova, L.B., New Complexing Agents to Select Auriferous Pyrite and Arsenopyrite, Journal of Mining Science, 2011, vol. 47, no. 1, pp. 102–108.
3. Chanturia, V.A., Ivanova, T.A., Matveeva, T.N., Gromova, N.K., and Lantsova, L.B., RF patent no. 2397025, Byull. Izobret., 2010, no. 23.
4. Matveeva, T.N., Scientific Basis of High-Efficient Flotation Methods for Gold- and Platinum-Containing Sulfide Minerals from Rebellious Ores, Dr. Eng. Dissertation, Moscow: IPKON RAN, 2011.
5. Chanturia, V.A., Ivanova, T.A., and Tyurnikova, V.I., Modification of Flotation Agent Solutions by High-Activity Compounds, Proc. 5th Congress of Beneficiation Engineers from CIS Countries, Moscow: Alteks, 2005.
6. Ivanova, T.A., Matveeva, T.N., and Gromova, N.K., Diethyldithiocarbamate Solution Modification Aimed to Obtain a Selective Non-Ionogenic Collector for Flotation of Platinum-Containing Sulfides, Gorny Zh,, 2010, no. 12.
7. Byr’ko, V.M., Ditiokarbamaty (Dithiocarbamates), Moscow: Nauka, 1984.
8. Ivanova, T.A., Chanturia, V.A., and Zimbovsky, I.G., New Experimental Evaluation Techniques for Selectivity of Collecting Agents for Gold and Platinum Flotation from Fine-Impregnated Noble Metal Ores, Journal of Mining Science, 2013, vol. 49, no. 5, pp. 785–794.

A. A. Lavrinenko, E. A. Shrader, A. N. Kharchikov, and I. V. Kunilova

The article reports research findings on flotation of apatite from brazilite–apatite–magnetite ore by domestic and foreign manufacture reagents. The agents Phospholan PE65 and Arcomon SO exhibit higher selectivity as compared to saponified tall oil fatty acids.

Flotation, apatite, Phospholan PE65, Arcomon SO, tall oil fatty acids

1. Lygach, V.N. and Golger, Yu.Ya., Dressing of Phosphate Ores Abroad, Itogi nauki i tekhniki. Obogashchenie poleznykh iskopaemykh (Totals of Science and Technology. Mineral Dressing), Moscow: VINITI, 1984, vol. 18.
2. Beloborodov, V.I., Zakharova, I.B., Andronov, G.P., Filimonova, N.M., and Popovich, V.F., Development Prospects of Phosphorus-Containing Mineral Resource Base of Kovdorsky Mining-and-Processing Integrated Works, Gorny Zh., 2009, no. 9.
3. Strezhnev, D.S., Ganza, N.A., Melik-Gaikazov, I.V., et al., Kovdorsky Mining-and-Processing Integrated Works Builds the Future: Strategic Program of Long-Term Development, Gorny Zh., 2007, no. 9.
4. Ratobyl’skaya, L.D., Zhavoronok, V.I., Vdovichenko, N.N., and Matyushenko, A.F., Using of Phosphoxyl Collectors and Spirits to Increase Flotation Effectiveness of Complex Apatite Ores, Pererabotka okislennykh rud (The Refining of Oxide-Bearing Ores), Moscow: Nauka, 1985.
5. Stefanovskaya, L.K., Kirikilitsa, S.I., Krot, V.V., Lyushnya, L.M., and Krylova, R.Ya., Using New Nitrogen-Containing Collectors in Flotation of Different Types of Phosphate Ores, Flotatsionnye reagenty (Flotation Reagents), Moscow: Nauka, 1986.
6. Ivanova, V.A. and Bredman, I.V., Alkylmonoethers Alkyl (Alkenyl-) of Amber Acids—Effective Collectors for Apatite Flotation, Flotatsionnye reagenty (Flotation Reagents), Moscow: Nauka, 1986.
7. Zhavoronok, V.I., Vdovichenko, N.N., Matyushenko, A.F., and Lyagushkin, A.P., Study on Possibility of Rational Use of Carbonatites of Kovdorsky Deposit, Proc. All-Union Conf. Comprehensive Utilization of Mineral Resources in the North and the North–West of the European Part of USSR, Petrozavodsk, 1990.
8. Knubovets, R.G., Crystal Chemistry and Flotation Properties of Apatite, Proc. All-Union Conf. Comprehensive Utilization of Mineral Resources in the North and the North–West of the European Part of USSR, Petrozavodsk, 1990.
9. Zhavoronok, V.I., Vdovichenko, N.N., Matyushenko, A.F., and Novozhilova, V.V., The Effect of Some Physicochemical Characteristics on Flotation Properties of Oxyalkyl-1,1-Diphosphonic Acids, Flotatsionnye reagenty (Flotation Reagents), Moscow: Nauka, 1986.
10. Shailaja Pradip, Beena Rai, and Rao, T.K., Molecular Modeling of Interactions of Diphosphonic Acid Based Surfactants with Calcium Minerals, Langmuir, 2002, vol. 18, no. 3.
11. Brylyakov, Yu.E., Shishkin, S.P., and Kostrova, M.A., Estimation Methods of Flotation Properties of Reagents in Flotation of Apatite–Nepheline Ores in Khibiny, PLaksin’s Lectures–2007 Proc., Apatity, 2007.
12. Vigdergauz, V.E., Shrader, E.A., Sarkisova, L.M., Kuznetsova, I.M., and Dorofeev, A.I., Increase in Contrast of Wettability of the Sulfide Minerals in Copper–Zinc Ores During Flotation and Flocculation, Journal of Mining Science, 2004, vol. 40, no. 3, pp. 304–309.
13. Boldyrev, A.I., Infrakrasnye spektry mineralov (Infrared Spectra of Minerals), Moscow: Nedra, 1976.

P. M. Solozhenkin, S. A. Kondrat’ev, and E. I. Angelova

The authors have carried out molecular modeling of clusters of simple structure and ring structure pyrite. It is suggested to analyze bonding of a collecting agent and cluster atoms using the collector capacity forecasting index. It is shown that butyl dixanthate more vigorously connects to cluster atoms than thionocarbamates, e.g., Z 200 and IETNC. Analysis of the charge transfer during interaction of pyrite with the listed collecting agents shows that in monodentate bonding the charge is transferred from the mineral to the collector sulfur atoms and in bidentate bonding the classical transfer of the charge from the collector donor to the mineral acceptor is observed. It is supposed that ferrum xanthate decompounding in an acid medium results in inception of dixanthates that govern pyrite flotation. Pyrite oxidation and elemental sulfur formation also favor pyrite flotation but complicate pyrite depression in an alkaline medium.

Minerals, sulfhydryl collectors, flotation, atomic charges, collector activity, molecular modeling

1. Shailaja Pradip and Beena Rai, Molecular Modeling and Rational Design of Flotation Reagents, Int. J. Miner. Process., 2003, vol. 72.
2. Beena Rai (Ed.), Molecular Modeling for the Design of Novel Performance Chemicals and Materials, 2012.
3. Guangyi Liu, Hong Zhong, Tagen Dai, and Liuyin Xia, Investigation of the Effect of N-Substituents on Performance of Thionocarbamates as Selective Collectors for Copper Sulphides by ab Initio Calculations, Mineral Engineering, 2008, vol. 21.
4. Wang, D., Lin, Q., and Jiang, Y., Molecular Design of Reagents for Mineral and Metallurgical Processing, Central South University of Technology, Changsha, 1996.
5. Guangyi Liu, Hong Zhong, Tagen Dai, and Liuyin Xia, Books of Abstracts, The 26th International Mineral Processing Congress—IMPC-2012, New Delhi, 2012, vol. 2.
6. Yekeler, M. and Yekeler, H., Reactivities of Some Thiol Collectors and Their Interactions with Ag+ Ion by Molecular Modeling, Appl. Surf. Sci., 2004, vol. 236.
7. Yekeler, M. and Yekeler, H., A Density Functional Study on the Efficiencies of 2-Mercaptobenzoxazole and Its Derivatives as Chelating Agents in Flotation Processes, Colloids Surf. A: Physicochem. Eng. Aspects, 2006, vol. 286.
8. Porento, M. and Hirva, P., Theoretical Studies on the Interaction of Anionic Collectors with Cu+, Cu2+, Zn2+ and Pb2+ Ions. Theor. Chem. Acc., 2002, vol. 107.
9. Porento, M. and Hirva, P., A Theoretical Study on the Interaction of Sulfhydryl Surfactants with a Covellite (001) Surface, Surf. Sci., 2004, vol. 555.
10. Solov’ev, M.E. and Solov’ev, M.M., Komp’yuternaya khimiya (Computer Chemistry), Moscow: SOLON-Press, 2005.
11. Tsirel’son, V.G., Kvantovaya khimiya. Molekuly, molekulyarnye sistemy i tverdye tela: ucheb. posobie dlya vuzov (Quantum Chemistry. Molecules, Molecular Systems and Solids: Higher Educational Aid), Moscow: BINOM, 2010.
12. Butyrskaya, E.V., Komp’yuternaya khimiya: osnovy teorii i rabota s programmami Gaussian i Gauss View (Computer Chemistry: Theoretic Framework and Operation in Gaussian and Gauss View Programs), Moscow: SOLON-Press, 2011.
13. Solozhenkin, P.M., Solozhenkin, O.I., and Sanda Krausz, Prediction of Efficiency of Flotation Collectors Based on Quantum Chemical Computations, Books of Abstracts, The 26th International Mineral Processing Congress—IMPC-2012, New Delhi, 2012, vol. 2.
14. Solozhenkin, P.M., Generation and Prediction of Properties of Effective Low-Toxic Flotation Agents Based on the Quantum Mechanics toward Comprehensive Extraction of Nonferrous and Noble Metals. Science Engineering in the Environmental Control. Review, VINITI, 2013, issue 1.
15. Solozhenkin, P.M., Creation of Prototype Sulphide Minerals and Their Interaction with Flotation and Leaching Agents by Quantum Mechanics Method, Miner’s Week 2013 Int. Conf. Proc., Moscow: Gornaya kniga, 2013.
16. Solozhenkin, P.M., Research of Interaction of Prototypes of Minerals with Solutions of Reagents by Quantum-Chemical Method, Proc. 16th Conf. Environment and Mineral Processing, Ostrava, 2012.
17. Solozhenkin, P.M. and Karlusova, Ê.Ì., Ñluster of Minerals Sb, Bi, As and Research of Their Interaction with Collectors by Quantum-Mechanics Method, Proc. 16th Conf. Environment and Mineral Processing, Ostrava, 2012.
18. Reutov, O.A., Kurts, A.L., and Butin, K.P., Ogranicheskaya khimiya v 4-kh chastyakh (Organic Chemistry: 4 Parts), Part I, Moscow: BINOM, 2005.
19. Vaughan, D.J. and Craig, J.R., Mineral Chemistry of Metal Sulphides, Cambridge University Press, 1978.
20. Khan, G.A., Gabrielova, L.I., and Vlasova, N.S., Flotatsionnye reagenty i ikh primenenie (Flotation Reagents and Their Application), Moscow: Nedra, 1986.
21. Solozhenkin, P.M and Solozhenkin, O.I., Computer-Aided Modeling of Disulphides of Thiophosphorus Acids and Sulfhydryl Collectors, Journal of Mining Science, 2011, vol. 47, no. 3, pp. 390–394.
22. Solozhenkin, P.M and Solozhenkin, O.I., Computer Design of Flotation Agents with Thioamide Group, Tsv. Metally, 2011, no. 7.

I. V. Shadrunova, E. G. Ozhogina, E. V. Kolodezhnaya, and O. E. Gorlova

The article considers experimental research findings on the phase composition of ferrous and nonferrous metal industry slag as well as the morphological structure and physico-mechanical properties of individual phases of slag with the aim to evaluate selectivity of their unlocking along intergrowth boundaries in impact crushing machines. The authors validate disintegration selectivity criterion of slag treatment in centrifugal impact crushers expressed as the ratio of micro-hardnesses of the slag phases.

Slag, ferrous metal industry, nonferrous metal industry, phase composition, physico-mechanical properties, selective destruction, disintegration, centrifugal impact crushing

1. Shadrunova, I.V., Savin, A.G., Volkova, N.A., and Gorlova, O.E., Issues of Technology, Economy and Ecology in Mining and Metallurgical Industry Waste Processing in the Ural Region, Proc. Congr. Industrial Waste Processing and Utilization Technology Fundamentals, Ekaterinburg: UIPTS, 2012.
2. Lotosh, V.E., Pererabotka otkhodov prirodopol’zovaniya (Natural Management Waste Material Processing), Ekaterinburg: UrGUPS, 2002.
3. Chanturia, V.A., Shadrunova, I.V., and Gorlova, O.E., Adaptation of Mineral Separation Processes to the Resources Offered by Industrial Waste: Problems and Solutions, Obog. rud, 2012, no. 5.
4. Shadrunova, I.V., Kozin, A.Yu., Vorob’ev, V.V., Artamonov, V.A., and Kolodezhnaya, E.V., Predictive Estimate of Proccessability and Reserves of Ferrous and Nonferrous Metallurgy Slag, Plaksin’s Lectures–2007 Proc., Apatity: KNTS RAN, 2007.
5. Ozhogina, E.G., Bronitskaya, E.S., Anufrieva, S.I., et al., Analyzing and Selecting Metallurgy Slag Processing Methods, Tsv. Metally, 2002, no. 8.
6. Shadrunova, I.V., Koptseva, N.V., Kolodezhnaya, E.V., and Efimova, Yu.Yu., Options of Computer-Aided Image and Test Method Analysis for Physico-Mechanical Properties for the Ore and Industrial Waste Processing Efficiency Assessment, Znachenie issledovanii tekhnologicheskoi mineralogii v reshenii zadach kompleksnogo osvoeniya mineral’nogo syr’ya (Mineralogy Engineering in Problems of Comprehensive Utilization of Minerals and Raw Material), Petrozavodsk: KarNTS, 2007.
7. Lebedeva, S.I., Mikrotverdost’ mineralov (Mineral Micro-Hardness), Moscow: Nedra, 1977.
8. Khopunov, E.A., Issledovanie mekhanizma selektivnogo razrusheniya rud (Analysis of Selective Disintegration of Ore), Leningrad: Mekhanobr, 1987.
9. Khuzemann, K., Selective Disintegration Criteria for Vein-Disseminated Copper–Molybdenum Ore, Sovershenstvovanie protsessov podgotovki rud (Ore Preparation Improvement), Leningrad: 1980.
10. Baron, L.I. and Glatman, L.B., Kontaktnaya prochnost’ gornykh porod (Contact Strength of Rocks), Moscow: Nedra: 1966.
11. Protod’yakonov, M.M., Teder, R.I., and Il’nitskaya, E.I., Raspredelenie i korrelyatsiya pokazatelei fizicheskikh svoistv gornykh porod: ucheb. posobie (Distribution and Correlation of Values of Physico-Mechanical Properties of Rocks: Educational Aid), Moscow: Nedra, 1981.

E. A. Ermolovich

In the article, the quantitative estimates of adsorption centers of composite backfill components and their alteration by grinding are presented. The derived correlating equation for ferruginous quartzite wet magnetic separation residue confirms the mineral dispersiveness and surface activity association.

Adsorption, the Bronsted and Lewis centers, planetary mill, disk vibratory mill, intergrinding, wet magnetic separation residue

1. Zeer, G.M., Fomenko, O.Yu., and Ledyaeva, O.N., Application of Scanning Electron Microscopy in Material Science, Journal of Siberian Federal University, Series Chemistry, 2009, vol. 2, issue 4.
2. Svatovskaya, L.B., Inzhenernaya khimiya (Engineering Chemistry), Part I, Saint-Petersburg: PGUPS, 1997.
3. Komokhov, P.G., and Shangina, N.N., Designing the Composition of Composites with Inorganic Binders, Considering Active Surface Sites of a Filler, Vestn. Otd. Stroit. Nauk, 1996, issue 1.
4. Shangina, N.N., Predicting of Physico-Mechanical Characteristics of Concrete, Taking into Account the Donor–Acceptor Properties of Fillers, Dr. Eng. Dissertation, Saint-Petersburg, 1998.
5. Svatovskaya. L.B., Gerchin, D.V., Shangin, V.Yu., and Chernakov, V.A., Modern Fundamental Science and the Current Challenges in the Construction Industry, Sukh. Stroit. Smesi Nov. Tekhnol. Stroit., 2002, no. 1.
6. Matvienko, V.A. and Babushkin, V.I., Effect of Electric Surface Properties of Concrete Paste Components on the Concrete Paste Structure, The 2nd Int. Sci. Conf. Proc., Dnepropetrovsk: DISI, 1993.
7. Tanabe Kozo, Solid Acids and Bases: Their Catalytic Properties, New York–London: Academic Press, 1970.
8. Paukshtis, E.A., Infrakrasnaya spektroskopiya v geterogennom kislotno-osnovnom analize (Infrared Spectroscopy in Heterogeneous Acid–Basic Analysis), Novosibirsk: Nauka, 1992.
9. Morrison, S.R., The Chemical Physics of Surfaces, London–New York: Plenum Press, 1977.
10. Eremina, N.S., Surface Properties of Silicium, Beryllium and Lead Oxides and Their Effect of the Moisture Protection Action of Films and Coatings, PhD Chemistry Dissertation, Tomsk: TGU, 1984.
11. Kudryashova, A.I., Acid–Basic Properties of Surfaces of Silicium, Aluminum, Zinc and Manganese Oxides and Their Variation under Structural Chemical Conversion, PhD Chemistry Dissertation, Leningrad, 1987.
12. Nechiporenko, A.P., Donor–Acceptor Properties of Surfaces of Solid Oxides and Chalcogenides, Dr. Chemistry Dissertation, Saint-Petersburg, 1995.
13. Nechiporenko, A.P. and Kudryashova, A.I., Acidity` of Surfaces of Solid Oxides, Izv. SPbGUNiPT, 2007, no. 3.
14. Nechiporenko, A.P. and Shevchenko, G.K., Study of the Effect Exerted by Thermal Treatment and Fineness of Silice Specimen on the Acid–Basic Properties of Its Surface, Zh. Obshch. Khim., 1995, vol. 55, issue 2.
15. Zakharova, N.V., Sychev, M.M., Korsakov, V.G., and Myakin, S.V., The Evolution of Donor–Acceptor Centers at the Surfaces of Ferroelectric Materials under Grinding, Kondens. Sredy i Mezhfaz. Granitsy, 2011, vol. 13, no. 1.
16. Sychev, M.M., Neorganicheskie klei (Inorganic Adhesives), Revised and Enlarged Edition, Leningrad: Khimiya, 1986.

Ðàçìåùåíèå: http://www.misd.ru/publishing/jms/numbers/2013/a5_2013_engl/