Rambler's Top100
Институт горного дела СО РАН
 Знак «Шахтерская слава» Лаборатория механики деформируемого твердого тела и сыпучих сред Кольцевые пневмоударные машины для забивания в грунт стержней Лаборатория механизации горных работ
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2008 год » JMS, Vol. 44, No. 2, 2008

JMS, Vol. 44, No. 2, 2008


A. P. Bobryakov

The paper describes the experimental results on influence of weak periodical shakes on the porosity and stress-strain state of the granular medium. It has been found that the stress relaxation under simple shear and single-plane direct shear is completely identical.

Experiment, granular material, shear, dilatancy, stress relaxation, porosity, weak perturbation

1. Ya. B. Fridman, The Mechanical Properties of Metals [in Russian], Part I, Mashinostroenie (1965).
2. A. Nadai, Theory of Flow and Fracture of Solids, McGraw-Hill, New-York (1950).
3. D. Mak Lin, The Mechanical Properties of Metals [Russian translation], Metallurgiya, Moscow (1965).
4. I. V. Luchitskii, V. I. Gromin, and T. D. Ushakov, Experiments on Deformation of Rocks under High Pressures and Temperatures [in Russian], Nauka, Novosibirsk (1967).
5. P. Bridgeman, Studies in Large Plastic Flow and Fracture, McGraw-Hill, New-York (1952).
6. A. I. Chanyshev, «Constitutive dependences for rocks in pre- and post-limit stages,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2002).
7. V. N. Nikolaevskii, «Mechanical properties of soils and theory of flow,» in: Resume in Science and Engineering. Series: Mechanics of Deformable Solids [in Russian], 6, VINITI, Moscow (1972).
8. K. Rosko, «The importance of deformations in soil mechanics,» Mekhanika, No. 3 (1971).
9. A. P. Bobryakov and A. F. Revuzhenko, «Uniform displacement of the granular material. Dilatancy,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1982).
10. A. P. Bobryakov and A. F. Revuzhenko, «Complex loading of free-flowing materials with breaks in the trajectory. Procedure and experimental results,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1994).
11. A. P. Bobryakov and A. F. Revuzhenko, «A test method for inelastic materials,» Mekh. Tverd. Tela, No. 4 (1990).
12. A. P. Bobryakov, V. P. Kosykh, and A. F. Revuzhenko, «Catastrophic consequences of prolonged weak action on free-flowing material,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1995).
13. A. P. Bobryakov and A. V. Lubyagin, «Regularities revealed on cyclic deformation of sand soil on the single-plane direct shear,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (2006).
14. A. P. Bobryakov, A. F. Revuzhenko, and E. I. Shemyakin, «Uniform shear of a granular material. Localization of strains,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1983).
15. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Pendulum-type waves. Part II: Experimental method and main results of physical modeling,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1996).
16. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Anomalously low friction in block media,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1997).

A. N. Dubovskoi, L. M. Pernik*, and A. L. Strom*

The paper describes the structural features of rockslides and draws a comparison between the energy efficiencies of fragmentation by a rockslide, breakage by blasting and destruction in a crusher. The authors have reproduced in the laboratory conditions the mechanism of heavy fragmentation of strong rocks under static loads typical of the real rockslides and with retained initial structure of the rock mass.

Rockslide, fragmentation, shear deformation, loads

1. S. S. Grigoryan, N. N. Nilov, A. V. Ostroumov, and V. S. Fedorenko, «Math modeling of the large-scale rock falls and landslides,» DAN SSSR, 244 (1979).
2. A. V. Potapov, «Numerical modeling of non-stationary geomechanical processes with low internal friction,» Theses of Cand. Phys.-Math. Sci. [in Russian], Moscow (1991).
3. O. Hungr, «A model for the runout analysis of rapid flow slides, debris flows and avalanches,» Canadian Geotechnical Journal, 32, No. 4 (1995).
4. O. Hungr and S. G. Evans, «Rock avalanche runout prediction using a dynamic model,» in: Proceedings of the 7th International Symposium on Landslides, Trondheim, Norway (1961).
5. O. Hungr, «Dynamics of rapid landslides,» in: Progress in Landslide Science, K. Sassa, H. Fukuoka, F. Wang, G. Wang (Eds.), Springer-Verlag (2007).
6. K. Sassa, H. Fukuoka, F. Wang, and G. Wang, «Undrained stress-controlled dynamic-loading ring-shear test to simulate initiation and post-failure motion of landslides,» in: Progress in Landslide Science, K. Sassa, H. Fukuoka, F. Wang, G. Wang (Eds.), Springer-Verlag (2007).
7. A. L. Strom, «Structure formation of large rockslide bodies,» Geoekol., Inzh. Geolog., Gidrolog., Geokriolog., No. 5 (1994).
8. A. L. Strom, «Mechanism of stratification and abnormal crushing of rockslide deposits,» in: Proceedings of the 7th International IAEG Congress, 3, Rotterdam, Balkema (1994).
9. K. E. Abdrakhmatov and A. L. Strom, «Dissected rockslide and rock-avalanche deposits, Tien Shan, Kyrgyzstan,» in: Massive Rock Slope Failures: New Models for Hazard Assessment, NATO Science Series (2006).
10. T. H. Erismann, «Mechanisms of large landslides,» Rock Mechanics, 12 (1979).
11. P. Wassmer, J.-L. Schneider, and N. Pollet, «Internal structure of huge mass movements: a key for a better understanding of long runout. The multy-slab theoretical model,» in: Proceedings of the International Symposium on Landslide Risk Mitigation and Protection of Cultural and Natural Heritage, Kyoto University, Kyoto (2002).
12. G. Scarascia Mugnozza, G. B. Fasani, C. Esposito, and S. G. Evans, «Prehistoric rock avalanches, mountain slope deformations and hazard conditions in the Maiella Massif (Central Italy),» in: Massive Rock Slope Failures: New Models for Hazard Assessment, NATO Science Series (2003).
13. K. Hewitt, «Catastrophic landslide deposits in the Karakoram Himalaya,» Science, 242 (1988).
14. K. Hewitt, «Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, Northern Pakistan,» Quaternary Research, 51 (1999).
15. K. Hewitt, «Rock avalanches with complex run out and emplacement, Karakoram Himalaya, Inner Asia: diagnostics for field identification,» in: Massive Rock Slope Failures: New Models for Hazard Assessment, NATO Science Series (2003).
16. I. Towhata, «Instability of submarine slope deposits; case studies and discussion on mass movement over long distance,» in: Proceedings of the Workshop on Seismic Design for Sakhalin to Japan Gas Pipeline, Japan Sakhalin Pipeline Co., Ltd (2003).
17. M. J. McSaveney and T. R. Davies, «Rapid rock-mass flow with dynamic fragmentation,» in: Massive Rock Slope Failures: New Models for Hazard Assessment, NATO Science Series (2003).
18. D. M. Cruden and O. Hungr, «The debris of the Frank Slide and theories of rockslide-avalanche mobility,» Canadian Journal of Earth Sciences, 23 (1986).
19. J. Hadjigeorgiou, R. Couture, and J. Locat, «In-situ block size distributions as tools for the study of rock avalanche mechanisms,» in: Proceedings of the 2nd North American Rock Mechanics Symposium, 1, Montreal (1996).
20. R. K. Bhandaru and K. Kumar, «Malpa rock avalanche of 18 August 1998,» Landslide News, No. 13 (2000).
21. A. Strom, «Morphology and internal structure of rockslides and rock avalanches: grounds and constraints for their modeling,» in: Landslides from Massive Rock Slope Failure, S. G. Evans, G. Scarascia Mugnozza, A. Strom, Hermanns R. L. (Eds.), Springer (2006).
22. V. N. Mosinets and A. V. Abramov, Destruction of Fractured and Faulted Rocks [in Russian], Nedra, Moscow (1982).
23. V. V. Adushkin, L. M. Pernik, S. I. Popel’, A. L. Strom, and A. S. Shishaeva, «Formation of nano- and micro-range particles in caving of rock mass slopes,» in: Nano- and Micro-Scale Particles in Geophysical Processes. Collected Scientific Works [in Rusian], IDG, Moscow (2006).
24. H. J. Melosh, «Acoustic fluidization: a new geological process?» Journal of Geophysical Research, 84, No. B13 (1979).
25. «Blasting safety,» in: Source-Book of the State Unitary Enterprise «Scientific and Technical Center for Industrial Safety of the Gosgortekhnadzor of Russia» [in Russian], Series 13, Issue 1, Moscow (2002).
26. V. N. Rodionov, V. V. Adushkin, V. N. Kostyuchenko, V. N. Nikolaevskii, et al., The Mechanical Effect of an Underground Explosion [in Russian], Nedra, Moscow (1971).
27. V. I. Revnivtsev and G. V. Gaponov, Selective Fracture of Minerals [in Russian], Nedra, Moscow (1988).

S. V. Kuchurin, V. L. Shkuratnik, and V. A. Vinnikov

TFeatures of thermal emission memory are studied experimentally on anthracite specimens under cyclic heating with time delays, wetting, freezing, variable startup temperatures and different thermal loading rates. The regularities of acoustic emission in coal are considered under heating the specimens with time delay and wetting.

Coal, acoustic emission, thermal emission memory, cyclic heating, test

1. V. A. Vinnikov and V. L. Shkuratnik, «Theoretical model of thermal emission memory in rocks,» Prikl. Mekh. Tekh. Fiz., No. 2 (2008).
2. V. L. Shkuratnik and A. V. Lavrov, Memory in Rocks. Physical Regularities, Theoretical Models [in Russian], Acad. Gornykh Nauk, Moscow (1997).
3. A. V. Lavrov, V. L. Shkuratnik, and Yu. L. Filimonov, Acoustic Emission in Rocks [in Russian], MGGU, Moscow (2004).
4. M. Seto, V. S. Vutukuri, and D. K. Nag, «Possibility of estimating in situ stress of virgin coal field using acoustic emission technique. Rock Stress,» Proceedings of the Symposium On Rock Stress, K. Sugawara & Y. Obara (Eds.), A. A. Balkema, Rotterdam (1997).
5. S. Yoshikawa and K. Mogi, «A new method for estimation of the crustal stress from cored rock samples: laboratory study in the case of uniaxial compression,» Tectonophysics, 74, Nos. 3, 4 (1981).
6. Ch. Yong and Ch. Wang, «Thermally induced acoustic emission in Westerly granite,» Geoph. Res. Lett., 7, No. 12 (1980).
7. V. V. Rzhevskii, V. S. Yamshchikov, V. L. Shkuratnik et al., «Thermal emission memory in rocks,» DAN SSSR, 283, No. 4 (1985).
8. B. Zogala, W. M. Zuberek, and A. Goroskiewicz, «Acoustic emission in Carboniferous sandstone and mudstone samples subjected to cyclic heating. Mining induced seismicity,» Acta Montana, Series A, II, No. 3 (89) Prague (1992).
9. M. A. Petrovskii, L. L. Panas’yan, and V. B. Khromova, «Emission memory in rocks under heating,» Izv. AN SSSR, Ser. Geofiz., No.10 (1987).
10. V. L. Shkuratnik, S. V. Kuchurin, and V. A. Vinnikov, «Regularities of acoustic emission and thermal emission memory effect in coal specimens under varying thermal conditions,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (2007).

A. A. Krasnovskii and V. E. Mirenkov

The papers considers the problems on deformation in a rock mass with an oil formation under condition of uncertain data on this rock mass. The pre-derived systems of integral equations are solved, and the results are discussed.

Equations, solution, layer of rocks, elasticity, oil formation, stress, displacement

1. M. V. Kurlenya, A. A. Krasnovskii, and V. E. Mirenkov, «Math modeling of deformation of a rock mass with an oil-bearing bed,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2007).
2. S. G. Mikhlin, «Stresses in rocks overlying a coal seam,» Izv. AN SSSR. OTN, Nos. 7 and 8 (1942).
3. G. I. Barenblatt and S. A. Khristianovich, «Roof collapse in mine workings,» Izv. AN SSSR. OTN, No. 11 (1955).
4. I. M. Kershtein, V. D. Klyushnikov, E. V. Lomakin, and S. A. Shesterikov, Foundations of the Experimental Fracture Mechanics [in Russian], MGU, Moscow (1989).
5. N. I. Muskhelishvili, Some of the Basic Problems in the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1967).
6. J. F. Knott, Fundamentals of Fracture Mechanics, Halsted Press, New York (1973).
7. M. V. Kurlenya, V. N. Oparin, and A. A. Eremenko, «Relation of linear block dimension of rock to crack opening in the structural hierarchy of masses,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1993).
8. Yu. N. Rabotnov, Mechanics of the Deformable Solid [in Russian], Nauka, Moscow (1988).

T. V. Lobanova

Integrated research data are presented for the earth motion and rock mass displacement at the Tashtagol Mine under general intensification of the dynamic geomedium activity, including periods of rock burst developments, by using conventional and satellite geodesy procedures.

Rock burst, tectonic disturbances, geodynamic movements of rocks, tectonic stresses, technogenic impact

1. V. A. Kvochin, T. V. Lobanova, A. I. Veselov et al., «Geodynamic processes in the industrial areas in the South of Western Siberia,» in: Conference Proceedings on Geodynamics and Stressed State of the Earth’s Bowels [in Russian], IGD SB RAS, Novosibirsk (2006).
2. V. A. Kvochin, T. V. Lobanova, N. I. Sklyar, and V. K. Klimko, «Evaluation of the rockburst hazard by development of deformation in the areas of tectonic disturbances,» in: Mining Machinery and Technology for Mineral Deposits, International Research Proc., 6, GOU VPO «SibGIU,» Novokuznetsk (2003).
3. V. A. Kvochin, Yu. S. Pershin, T. V. Lobanova, M. F. Petukhov, and, V. K. Klimko, «Studies of stress-strain state of rock mass by employing a multi-channel recording deformometer at the Tashtagol Mine,» in: Investigations into the Stress-Strain State of Rock Masses at Mines. Collected Scientific Works [in Russian], IGD SO AN SSSR, Novosibirsk (1990).
4. V. A. Kvochin, G. L. Lindin, T. V. Lobanova, and N. N. Romanova, «Software package for calculation of shears, deformations and stresses nearby elliptical workings,» in: Methodical Instructions [in Russian], V. A. Kvochin (Ed.), RIO NFI KemGU, Novokuznetsk (2003).
5. A. V. Zubkov, Ya. I. Lipin, S. V. Khudyakov et al., «Pulsation of tectonic stresses in the crust in the Urals area,» in: Geomechanics in Mining [in Russian], IGD UrO RAN, Ekaterinburg (2000).
6. A. V. Zubkov, Ya. I. Lipin, O. Yu. Smirnov, and I. V. Biryuchev, «On evaluating the parameters of variations of the elastic stress field in the crust at the Ural area,» in: Conference Proceedings on Geodynamics and Stressed State of the Earth’s Bowels [in Russian], IGD SO RAN, Novosibirsk (2004).
7. Methodical Instructions for Prevention of Rock Bursts, Considering Geodynamics of Mineral Deposits [in Russian], I. M. Petukhov and I. M. Batugina (Eds.), VNIMI, Leningrad (1983).
8. I. M. Batugina and I. M. Petukhov, Geodynamic Zoning of Mineral Deposits when Planning and Operating a Mine [in Russian], Nedra, Moscow (1988).
9. A. A. Lukashov, «Geomorphological analysis during exploration and commercial development of mineral deposits,» Thesis of Dr.Geogr.Sci. [in Russian], Moscow (1990).
10. T. V. Lobanova, V. A. Kvochin, and O. N. Vorob’eva, «Dynamics of wall rocks,» in: Geodynamic Zoning of Mineral Resources. Collected Works [in Russian], Kuzbass Politekh. Inst., Kemerovo (1991).
11. V. A. Kvochin, T. V. Lobanova, N. I. Sklyar, V. K. Klimko, and V. A. Vaganova, "Geodynamic processes in mining of iron-ore deposits in Gornaya Shoria, in: Conference Proceedings on Geodynamics and Stressed State of the Earth’s Bowels [in Russian], IGD SB RAS, Novosibirsk (1999).
12. T. V. Lobanova, «Investigation into geodynamic activity of the Tashtagol deposit by applying satellite geodesy technologies,» in: GEO-Siberia-2007. Susboil Use, New Directions and Technologies for Exploration and Development of Mineral Deposits [in Russian], 5, SGGA, Novosibirsk (2007).
13. V. A. Kvochin, T. V. Lobanova, A. F. Kleshcheva, and E. V. Novikova, «Investigation into the rock mass deformation at the Tashtagol deposit by employing GPS technologies in the course of large-scale blasting,» in: GEO-Siberia-2007. Susboil Use, New Directions and Technologies for Exploration and Development of Mineral Deposits [in Russian], 5, SGGA, Novosibirsk (2006).
14. V. A. Kvochin, V. V. Bilibin, T. P. Vasil’chenkov, T. V. Lobanova, et al., «Geodynamic safety of mining at iron ore deposits in Siberia,» Gorn. Zh., No. 11 (2005).
15. V. A. Kvochin, G. L. Lindin, and T. V. Lobanova, «Theoretical estimation of the conditions for geodynamic movement manifestations in fault areas and their effect on underground hydrotechnical facilities,» in: Mining Machinery and Technology for Mineral Deposits. Collected Scientific Works [in Russian], 7, SibGIU, Novokuznetsk (2005).

V. D. Baryshnikov and L. N. Gakhova

Based on the numerical modeling results, the authors have revealed the features of stress state in the vicinity of development and stope workings in the course of the upward slice chamber-and-pillar mining under the open pit bottom in terms of the mine «Aikhal». The optimal layout of access entries and their mining sequence in a layer are substantiated.

Mathematical modeling, stress-strain state, upward mining, strength properties, stability

1. V. D. Baryshnikov and L. N. Gakhova, «Stress-strain state of a rock mass under the open pit bottom during underground slice mining,» in: International Conference Proceedings «Geodynamics and Stress State of the Earth’s Interior» [in Russian], IGD SO RAN, Novosibirsk (2006).
2. L. N. Gakhova, «Stress-strain state analysis program for a block roc mass by the boundary integral equations (ELB2D),» Official Registration Certificate No. 960814 [in Russian], PosAPO.
3. V. D. Baryshnikov and L. N. Gakhova, «Peculiarities of stress state formation near working in the transient zone from the open to underground deposit mining,» in: Underground Space and Rock Mechanics [in Russian], TA INGENEERING, Moscow (2005).
4. V. D. Baryshnikov, L. N. Gakhova, A. P. Filatov, and N. A. Cherepnov, "Geomechanical substantiation of upward slice mining of the reserves subjacent the open pit bottom in mine «Aikhal» Gorn. Inform.-Analit. Byull., No. 11 (2007).


A. M. Budkov and G. G. Kocharyan

Based on the studied features of propagation of seismic waves in a rock mass with a long structural fault, the authors have found the relationships between the seismic wave attenuation and weakening by the fault, the physic-mechanical properties of the fault filler, the fault thickness and the wave incidence angle. It is shown that relative displacements of the fault edges occur due to the difference in the wave parameters in front of and behind the faulting. The obtained data are compared with the «inertia model» calculations and the experimental results.

Rock mass, structural faults, seismic wave

M. A. Sadovsky, L. G. Bolkhovitinov, and V. F. Pisarenko, Deformation of a Geophysical Medium and the Seismic Process [in Russian], Nauka, Moscow (1987).
2. V. N. Oparin, E. G. Balmashnova, and V. I. Vostrikov, «On dynamic behavior of «self-stressed» block media. Part II: Comparison of theoretical and experimental data,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2001).
3. M. V. Kurlenya, V. N. Oparin, V. I. Vostrikov, et al., «Pendulum waves. Part III: Data of on-site observations,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1996).
4. V. N. Kostyuchenko, G. G. Kocharyan, and V. D. Pavlov, «Seismic faults diagnostics ability,» Dokl. Akad. Nauk, 333, No. 5 (1993).
5. G. G. Kocharyan, V. N. Kostyuchenko, and D. V. Pavlov, «Structure of various scale natural rock discontinuities and their deformation properties,» Intern. J. Rock Mech. & Min. Sci. 34, Nos. 3, 4 (1997).
6. L. J. Pyrak-Nolte and N. G. Cook, «Elastic interface waves along a fracture,» J. Geophys. Res. Lett., 14, No. 11 (1987).
7. V. V. Adushkin and A. A. Spivak, Geomechanics of Large-Scale Underground Explosions [in Russian], Nedra, Moscow (1993).
8. G. G. Kocharyan and A. A. Spivak, Dynamics of the Block Rock Mass Deformation [in Russian], IKTS «Akademkniga,» Moscow (2003).
9. V. N. Arkhipov, V. A. Borisov, A. M. Budkov, et al., The Nuclear Blast Mechanism [in Russian], Fizmatlit, Moscow (2002).
10. G. Mainchen and S. Sak, «Tensor calculation method,» in: Computational Methods in Hydrodynamics [Russian translation], Mir, Moscow (1967).
11. B. V. Zamyshlyaev and L. S. Evterev, Models of the Dynamic Deformation and Fracture of Subsoil Media [in Russian], Nauka, Moscow (1990).
12. V. V. Adushkin, A. M. Budkov, V. N. Kostyuchenko, G. G. Kocharyan, and A. V. Pogoretskii, «A type of the seismic waves that propagate in a medium containing long structural faults,» Dokl. Akad. Nauk, 358, No. 1 (1998).
13. Y.-G. Li and P. C. Leary, «Fault zone trapped seismic waves,» Bulletin of the Seismological Society of America, 80, No. 5 (1990).
14. A. M. Budkov, G. G. Kocharyan, and A. V. Pogoretskii, «Features of diagnostics of rock mass discontinuities based on refracted waves,» in: Physical Processes in Geopsheres Subject to Strong Disturbance [in Russian], IDG RAN, Moscow (1996).
15. A. M. Budkov, V. N. Kostyuchenko, G. G. Kocharyan, A. V. Pogoretckii, and V. B. Rozhdestvenskii, «Studies of the seismic wave and fracture interaction,» in: Dynamic Processes in the Inner and Outer Shells of the Earth [in Russian], IDG RAN, Moscow (1995).
16. G. G. Kocharyan and A. A. Spivak, «Movement of rock blocks during large-scale underground explosions. Part I: Experimental data,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (2001).

V. F. Vazhov, M. Yu. Zhurkov, V. V. Lopatin, and V. M. Muratov

The test data are reported on rock cutting by the electric discharge with movable and stationary electrodes. The specific crushing energy is determined, the electrode system design is optimized, and the high-voltage impulse parameters selected for highly efficient fracture. The study results make the grounds to develop an electric-discharge cutter for rocks and concrete.

Electric discharge, rock, energy consumption, two-electrode mobile system, cutting

1. W. C. Maurer, Novell Drilling Techniques, Pergamon Press, GB (1968).
2. B. V. Semkin, A. F. Usov, and V. I. Kurets, Fundumentals of Electroimpulse Fracture of Materials [in Russian], Nauka, Saint Petersburg (1995).
3. A. A. Vorob’ev and G. A. Vorob’ev, Electric Breakdown and Fracture of Solid Dielectrics [in Russian], Vyssh. Shk., Moscow (1966).
4. A. A. Vorob’ev, G. A. Vorob’ev, E. K. Zavadovskaya, et al., Impulse Breakdown and Fracture of Dielectrics and Rocks [in Russian], Izd. TGU, Tomsk (1971).
5. V. V. Burkin, «Peculiarities of blasting effect at impulse breakdown of strong media,» Fiz. Goren. Vzryv., No. 4 (1985).
6. V. I. Kurets, A. F. Usov, and V. A. Tsukerman, Electroimpulse Disintegration of Materials [in Russian], Izd. KNTs RAN, Apatity (2002).
7. V. Goldfarb, R. Budny, A. Dunton, G. Shneerson, S. Krivosheev, and Yu. Adamian, «Removal of surface layer of concrete by an impulse-periodical discharge,» The 11th IEEE International Impulsed Power Conference: Digest of Technical Papers, 2, Baltimore, USA (1997).
8. A. G. Sinebryukhov, «Investigation into energy characteristics of impulse discharge in solid dielectrics and electric-impulse rock cutting,» Thesis Cand.Tech.Sci. [in Russian], Tomsk (1964).
9. A. F. Usov, «Studies of conditions for using the conducting media in electroemulsive technologies,» Thesis Cand.Tech.Sci. [in Russian], Tomsk (1966).
10. Yu. A. Krasnyatov, «Development and studies of electroimpulse cutting devices to drive slots and trenches in rocks and concrete,» Thesis Cand.Tech.Sci. [in Russian], Tomsk (1982).
11. V. F. Vazhov, M. Yu. Zhurkov, and V. M. Muratov, «Rock cutting by electroimpulse charges of mobile electrode system in water,» in: Proceedings of the 5th International Conference «Electromechanics, Electrotechnologies, and Science of Electromaterials,» MKEEE-2003 (ICEEE-2003). Part II [in Russian], IE MEI, Moscow (2003).
12. V. F. Vazhov, M. Yu. Zhurkov, and V. M. Muratov, «Russian Federation Patent No. 2232271. Electroimpulse rock fracture method,» Byull. Izobret., No. 19 (2004).


L. V. Gorodilov

The paper presents mathematical model of a direct-acting self-oscillatory hydropercussion system. Output characteristics of the system are studied numerically in the space of the determined dynamic simulation criteria. Analysis of the results shown as isolines of the integral characteristics, theoretical oscillograms and phase curves has yielded a series of important behavioral features of the system in the basic simulation criteria space.

Percussion system, spring linkage, self-oscillations, limit cycle, dynamic simulation criteria, characteristics

1. L. V. Gorodilov and P. Ya. Fadeev, «Analysis and classification of the efficient structural layouts for autooscillation hydropercussion systems,» in: Conference Proceedings «Fundamental Problems of a Technogenic Medium Formation. Machine Science» [in Russian], IGD SO RAN, Novosibirsk (2006).
2. L. V. Gorodilov, «Numerical study into dynamics of self-oscillatory hydropercussion systems. Part I,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2007).
3. F. F. Voskresenskii, A. V. Kichigin, A. M. Slavskii, et al., Vibratory and Percussion-Rotary Drilling [in Russian], Gostoptekhizdat, Moscow (1961).
4. L. V. Gorodilov, «Model of a hydropercussion system with a constant flow source,» in: Transactions of the 3rd International Symposium «Shock-and-Vibration Machines and Technologies» [in Russian], Orel (2006).
5. L. V. Gorodilov, «Mathematical models of hydropercussion systems,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2005).

A. R. Mattis, V. N. Labutin, and V. I. Cheskidov

The potentialities are considered for the surface miner application to mine rocks strong up to 100 MPa strength through equipping the machine effector with impact devices. The capacities of the active rotor machine and KSM-2000R are compared.

Active rotor, dynamic bucket, capacity, rock, explosion-free mining

1. A. R. Mattis, V. I. Cheskidov, V. L. Yakovlev, et al., Technology of Explosion-Free Open Mining of Hard Minerals [in Russian], Izd. SO RAN, Novosibirsk (2007).
2. B. G. Aleshin et al., «Design and technological peculiarities and perspectives of KSM machine application at open pit mines in Russia,» Gorn. Vestnik, No. 4 (1996).
3. S. K. Kovalenko, A. I. Shenderov, and R. M. Shteintsaig, «Up-dating of mining processes at the Taldinsky coal open pit,» Ugol, No. 1 (1997).
4. V. M. Vladimirov et al., Rotor Quarry Excavators [in Russian], Tekhnika, Kiev (1968).
5. A. R. Mattis, V. N. Labutin, and L. L. Lysenko, «Method of determining the energy parameters of the drive of the percussive teeth of a powered excavator bucket,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1995).
6. A. R. Mattis, V. I. Kuznetsov, E. I. Vasil’ev, et al., Excavators with Dynamic Bucket [in Russian], Nauka, Novosibirsk (1996).
7. A. I. Fedulov and V. N. Labutin, Percussive Coal Breaking [in Russian], Nauka, Novosibirsk (1973).
8. E. V. Gaisler, E. A. Mochalov, A. R. Mattis, and S. V. Shishaev, «A model of the working operations of a quarry excavator,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1991).
9. L. I. Baron, G. M. Veselov, and Yu. G. Konyashin, Investigations into Percussive Rock Failure [in Russian], Izd. AN SSSR, Moscow (1962).
10. S. V. Shishaev, A. I. Fedulov, and A. R. Mattis, Design and Development of Dynamic Bucket [in Russian], IGD SO AN SSSR, Novosibirsk (1989).
11. A. R. Mattis and V. N. Labutin, «Evaluation of productivity of excavators with a dynamic bucket in stripping of rocks with hard inclusions,» Gorn Mash. Avtomatika, No. 5 (2002).
12. G. L. Krasnyanskii, R. M. Shteintsaig, R. Rudolf, and S. K. Kovalenko, «Practice and perspectives of employing new-generation machine KSM-2000RM in the mining industry,» Ugol, No. 4 (1998).


Mohammad Waqar Ali Asad

This paper presents a new methodology in form of three sequencing techniques for the development of alternative quarry plans using cement quarry production-sequencing algorithm. The algorithm generates multi-period quarry plans, satisfying geometric (slope) and cement plant production capacity constraints. The benefits of the approach are demonstrated through application on an existing cement manufacturing operation in Midwestern USA.

Optimization, mine planning and design, production sequencing algorithms, cement raw mix

1. K. K. Kathal, and M. K. Mukherjee, «Waste management: utilization of fly ash in optimization of raw mix design for the manufacture of cement», Journal of Mines, Metals, and Fuels (1999).
2. T. G. Austin, «Shreve’s chemical process industries», 5th Edition, McGraw Hill Book Company New York (1984).
3. W. Baumgartner, «Latest innovations in quarry design and management», International Cement Review (1989).
4. W. Baumgartner and M. Honerkamp, «Quarry engineering design, a further step in computerized raw materials management», International Cement Review (1992).
5. M. W. A. Asad, «Development of optimum blend/minimum cost scheduling algorithm for cement quarry operations,» Ph.D. Dissertation, Colorado School of Mines (2001).
6. K. Dagdelen and M. W. A. Asad, «Optimum cement quarry scheduling algorithm», Proceedings of the 30th Symposium on Applications of Computers and Operations Research (2002).
7. United States Geological Survey, «Mineral Commodity Summaries», http://minerals.usgs.gov/minerals/pubs/mcs/ (2007).
8. E. C. K. Chanda, «An application of coal programming to production planning in the crushed stone industry,» International Journal of Surface Mining (1991).
9. K. Dagdelen, «Multi-period production scheduling using Lagrange multipliers,» Ph.D. Dissertation, Colorado School of Mines (1985).


A. G. Vostretsov, A. V. Krivetskii, A. A. Bizyaev*, and G. E. Yakovitskaya*

The prototype of a new portable device of EMRR series (electromagnetic radiation recorder), EMRR-3 is developed and manufactured to monitor and forecast dynamic rock mass manifestations by electromagnetic radiation signals. The device makes it possible to predict dynamic manifestations based on algorithms of stable electromagnetic signal detection, to perform long-term (up to 8 h) digital recording of electromagnetic situation in underground mine workings, followed by the accumulated information computer-processing.

Rocks, failurе, diagnostics, electromagnetic radiation, device

1. M. I. Miroshnichenko and V. S. Kuksenko, «Investigation into electromagnetic impulses under initial fracturing of solid dielectrics,» Fiz. Tverd. Tela, 22, No. 5 (1980).
2. P. V. Egorov, V. V. Ivanov, L. A. Kolpakova, et al., «Dynamics of fracturing and electromagnetic radiation of rocks under load,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1988).
3. M. V. Kurlenya, A. G. Vostretsov, G. I. Kulakov, V. I. Kushnir, and G. E. Yakovitskaya, «Russian Federation Patent No. 2137920. Method of forecasting rock bursts and device for its implementation,» Byull. Izobret., No. 26 (1999).
4. Chi-Yu King, «Electromagnetic emission before earthquakes,» Nature, 301, No. 3 (1983).
5. M. E. Perel’man and N. G. Khatiashvili, «On radio-radiation under brittle dielectric failure,» Dokl. AN SSSR, 220, No. 1, (1981).
6. M. B. Gokhberg (Ed.), Search for Electromagnetic Predecessors of Earthquakes [in Russian], Izd. IFZ AN SSSR, Moscow (1988).
7. M. V. Kurlenya and V. N. Oparin, Downhole Geophysical Processes for Diagnostics and Control of Stressed State in Rocks [in Russian], Nauka, Novosibirsk (1999).
8. M. V. Kurlenya, V. N. Oparin, and G. E. Yakovitskaya, «USSR Author’s Certificate No. 1562449. Method of Prediction of rock mass failure,» Byull. Izobret., No. 17 (1990).
9. V. K. Klimko, S. V. Moiseev, V. A. Shtirts, and G. E. Yakovitskaya, «Retrospective analysis of the comparative AE and EMR signal characteristics under dynamic rock pressure manifestation at the Tashtagol Mine,» Dokl. AN VSh Ross., 9, No. 2 (2007).
10. V. A. Vaganova, L. M. Lazarevich, O. V. Shipeev et al., «System of geophysical observation methods for monitoring the state of tectonic disturbances at the Tashtagol Mine,» in: International Conference Proceedings «Mining Geophysics» [in Russian], Saint Petersburg (1988).
11. M. V. Kurlenya, G. I. Kulakov, A. G. Vostretsov et al., «Background electromagnetic radiation recorded in underground workings of the Tashtagol Mine,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (2002).

Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2019. Информация о сайте