Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Знак «Шахтерская слава» Кольцевые пневмоударные машины для забивания в грунт стержней Лаборатория механизации горных работ
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2008 год » JMS, Vol. 44, No. 4, 2008

JMS, Vol. 44, No. 4, 2008

GEOMECHANICS


STRESSES AND DISPLACEMENTS OF ROCKS HOSTING. A. MINERAL-BEARING BED
M. V. Kurlenya, A. A. Krasnovskii, and V. E. Mirenkov

The authors use an experimental-analytical approach to derive singular integral equations for evaluation of stresses and displacements in the oil-bearing bed host rocks, present their numerical solution and discuss the calculation data.

Rock layer, oil-bearing bed, stress, displacement, equations, solution, elasticity, singularity

REFERENCES
1. M. V. Kurlenya, A. A. Krasnovskii, and V. E. Mirenkov, «Math modeling of deformation of a rock mass with an oil-bearing bed,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2007).
2. A. A. Krasnovskii and V. E. Mirenkov, «Analysis of deformation of the compound rock blocks with cracks,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (2008).
3. S. G. Mikhlin, «On stresses in rocks overlying a coal seam,» Izv. AN SSSR, OTN, Nos. 7, 8 (1942).
4. G. I. Barenblatt and S. A. Khristianovich, «Roof caving in mine workings,» Izv. AN SSSR, OTN, No. 11 (1955).
5. N. I. Muskhelishvili, Some Fundamental Problems of Mathematical Elasticity Theory [in Russian], Nauka, Moscow (1967).
6. A. A. Eremenko, V. M. Seryakov, and A. P. Filatov, «Estimate of the rock-mass state in the course of mining the reserves subjacent the open pit bottom at the Udachnaya pipe,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (2007).


EXPERIMENTAL INVESTIGATION INTO UNSTABLE SLIPPAGE
A. P. Bobryakov and A. V. Lubyagin*

The authors discuss the results of observing unstable slippage over contact surfaces in geomaterials exposed to soft shear loading. It is experimentally established that the dynamic effects take place on the rigid surfaces and, likewise, in granular materials, in the form of unstable shifts in the plane of shearing. The process dynamics, values of the displacement discontinuities and stress drops are studied under varied loading conditions.

Shear, contact rigidity, soft loading, stick-slip, displacement discontinuity, stress drop

REFERENCES
1. W. F. Brace and J. D. Byerlee, Stick-Slip as a Mechanism of Earthquakes, Science (1966).
2. V. N. Rodionov and I. A. Sizov, «Dynamics of slow rock block hill-creep,» Geoekologiya, No. 4 (1999).
3. K. Kasahara, Earthquake Mechanics [Russian translation], Mir, Moscow (1985).
4. G. G. Kocharyan, A. A. Benedik, V. N. Kostyuchenko, et al., «Creating geomechanical models of geophysical objects,» in: Physical Processes in Geopsheres Exposed to Strong Perturbation [in Russian], IDG RAN, Moscow (1996).
5. A. V. Leont’ev and L. A. Nazarov, «Determination of stiffness factors for the contact between blocks of rock,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1994).
6. N. Esaki, S. Du., Y. Mitani, K. Ikusada, and L. Jing, «Development of a shear-flow test apparatus and determination of coupled properties for a single rock joint,» Int. J. Rock Mech., Min. Sci., 36 (1999).
7. A. M. Lin’kov, «Numerical modeling of seismic and aseismic events in geomechanics,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (2005).
8. A. F. Revuzhenko, «Stress-strain state of a weakening rock mass around an opening,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1978).
9. Z. Bieniawski, Ground Control [Russian translation], Mir, Moscow (1990).
10. T. I. Gerasimova, V. N. Kondrat’ev, and G. G. Kocharyan, «Modeling features of shear deformation of fissures containing filler,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1995).
11. D. A. Van’kov, «Dynamic ring shear and its actual potential,» Geoekologiya, No. 4 (1999).
12. A. P. Bobryakov and A. V. Lubyagin, «Regularities revealed on cyclic deformation of sand soil on the single-plane direct shear machine,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2006).
13. M. V. Kurlenya, Yu. A. Afinogenov, V. M. Zhigalkin, V. N. Oparin, O. M. Usol’tseva, and A. I. Chanyshev, «Block phenomenological mechanical model of an element of a deformable medium. Definition, basic properties. Part II: Dynamic effects,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1998).
14. A. P. Bobryakov and A. F. Revuzhenko, «Uniform displacement of the granular material. Dilatancy,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1982).
15. M. V. Kurlenya, V. N. Oparin, A. F. Revuzhenko, and E. I. Shemyakin, «Some features of the near-field blasting response of rocks,» Dokl. AN SSSR, 293, No. 1 (1987).


ANORMALIES OF AMPLITUDE ATTENUATION FOR ACOUSTIC LOW-INTENSITY WAVES IN ROCKS
E. I. Mashinsky

The effect of abnormal acoustic wave attenuation induced by amplitude variations in rocks has been established experimentally. The amplitude growth results in the increase in elastic wave velocities and reduction in the attenuation decrement. The attenuation is more sensitive to amplitude variations than to a wave velocity. Obtained data are applicable to diagnose a state of fractured and porous rocks.

Inelasticity, stress-strain ratio, hysteresis, amplitude-dependant wave velocity and attenuation, nonlinear seismics, diagnostics

REFERENCES
1. V. N. Oparin, A. A. Akinin, V. I. Vostrikov, and V. F. Yushkin, «Non-linear deformation processes in the vacinity of mine workings,» Part I, Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (2003).
2. M. V. Kurlenya and S. V. Serdyukov, «Nonlinear effects in the radiation and propagation of vibro-seismic signals in a rock mass,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1999).
3. E. I. Mashinskii, V. Z. Koksharov, and Yu. A. Nefedkin, «Amplitude-dependent effects in the range of small seismic deformations,» Geology and Geophysics, 40, No. 4 (1999).
4. E. I. Mashinskii, «The variants of the strain-amplitude dependence of elastic wave velocities in the rocks under pressure,» Journal of Geophysics and Engineering, 1, No. 4 (2004).
5. E. I. Mashinskii, «Experimental study of the amplitude effect on wave velocity and attenuation in consolidated rocks under confining pressure,» Journal of Geophysics and Engineering, 2, No. 3 (2005).
6. K. Winkler, A. Nur, and M. Gladwin. Friction and Seismic Attenuation in Rock. Nature, London (1979).
7. P. A. Johnson, B. Zinszner, and P. N. J. Rasolofosoan, «Resonance and elastic nonlinear phenomena in rock,» J. Geophys. Res., 101, No. B5 (1996).
8. L. A. Ostrovsky and P. A. Johnson, «Dynamic nonlinear elasticity in geomaterials,» La Rivista del Nuovo Cimento, 24, Nos. 4, 7 (2001).
9. J. A. Ten Cate and T. J. Shankland, «Slow dynamics in the nonlinear elastic response,» J. Geophys. Res., 23, No. 21 (1996).
10. K. E.-A. Van Den Abeele, P. A. Johnson, and R. A. Guyer, «On the Quasi-Analytic Treatment of Hysteretic Nonlinear Response in Elastic Wave Propagation,» J. Acoust. Soc. Am., 101, No. 4 (1997).
11. A. N. Tutuncu, A. L. Podio, A. R. Gregory, and M. M. Sharma, «Nonlinear Viscoelastic Behavior of Sedimentary Rocks, Part I: Effect of Frequency and Strain Amplitude,» Geophysics, 63, No. 1 (1998).
12. K. R. McCall and R. A. Guyer, «Equation of State and Wave Propagation in Hysteretic Nonlinear Elastic Materials,» J. Geophys. Res., 99, No. B 12 (1994).
13. R. A. Guyer and P. A. Johnson, «Nonlinear microscopic elasticity: Evidence for a new class of materials,» Physics Today, 52, No. 4 (1999).
14. V. Yu. Zaitsev, V. E. Nazarov, and V. I. Talanov, «Experimental Study of the Self-Action of Seismoacoustic Waves,» Acoustic Physics, 45, No. 6 (1999).
15. E. I. Mashinskii, «Nonlinear amplitude-frequency characteristics of attenuation in rock under pressure,» J. Geophys. Eng., No. 3, (2006).
16. E. I. Mashinskii, «Effect of Strain Amplitude on the Relaxation Spectra of Attenuation in the Dry and Saturated Sandstone under Pressure,» J. Geophys. Eng., No. 4 (2007).
17. E. I. Mashinsky and G. N. D’yakov, «Amplitude-dependentattenuationof impulse signals in rocks,» Earth Physics, No. 11 (1999).
18. V. M. Arzhavitin, «Amplitude Dependence of the Internal Friction in a Pb-62% Sn Alloy,» Technical Physics, 49, No. 6 (2004).
19. E. I. Mashinsky, «Quasi-micro-plasticity processes and nonlinear seismicity,» Physics of the Solid Earth, Washington, DC, United States, 30, No. 2 (1994).
20. E. I. Mashinskii, «Non-linear stress-strain relation in sedimentary rocks and its effect on seismic wave velocity,» Geophysica, 41, Nos. 1 — 2 (2005).


CALCULATION OF WAVE PROPAGATION IN THE TWO-DIMENSIONAL ASSEMBLY OF RECTANGULAR BLOCKS
V. A. Saraikin

The author calculates disturbances applied to a two-dimensional assembly of rigid rectangular blocks circumjacent with thin elastic inertialess layers. The waveguide properties of the 2D block medium are studied as a subproblem. The paper discusses the results of calculating the normal-directed loading of a boundary block with the purpose to find the relationship between the disturbances and space orientation of the rectangular blocks relative to the loading application, and the elastic crumpling of layers between the blocks.

Block medium, contact conditions, transient waves, crumpling

REFERENCES
1. M. A. Sadovsky, «Natural lumpiness of rocks,» Dokl AN SSSR, 247, No. 4 (1979).
2. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Formation of elastic wave packing in block media under pulse excitation. Pendulum type waves ,» Dokl AN SSSR, 333, No. 4 (1993).
3. V. N. Oparin, B. D. Annin, Yu. V. Chugui, V. M. Zhigalkin, et al., «Methods and measuring equipment for modeling and in-situ monitoring of nonlinear wave-deformation processes in block rock masses,» in: Integration Projects. Issue 13 [in Russia], SO RAN, Novosibirsk (2007).
4. M. J. Fulton, «Numerical modeling in the discrete medium mechanics. Part I: methods of problem solution,» in: Introduction to Rock Mechanics [Russian translation], H. Bock (Ed.), Mir, Moscow (1983).
5. D. H. Trollop, «Numerical modeling in the discrete medium mechanics. Part II: Application of the numerical methods,» in: Introduction to Rock Mechanics [Russian translation], H. Bock (Ed.), Mir, Moscow (1983).
6. D. H. Trollop, «Stress distribution around underground openings. Solutions of the granular medium mechanics,» in: Introduction to Rock Mechanics [Russian translation], H. Bock (Ed.), Mir, Moscow (1983).
7. N. I. Aleksandrova, «Elastic wave propagation in block medium under impulse loading,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2003).
8. N. I. Aleksandrova and E. N. Sher, «Modeling of wave propagation in block media,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2004).
9. E. N. Sher, N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, and A. G. Chernikov, «Influence of the bloc-hierarchical structure of rocks on the peculiarities of the seismic wave propagation,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2007).
10. V. A. Saraikin, M. V. Stepanenko, and O. V. Tsareva, «Elastic waves in a block medium,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1988).
11. V. A. Saraikin, «Motion equations for a block medium,» in: Problems of the Mechanics of Solids and Rocks. Collected Works [in Russian], D. D. Ivlev and N. F. Morozov (Eds.), Fizmatlit, Moscow (2006).
12. V. A. Saraikin, «Two-dimensional equations for block medium movement,» in: International Conference Proceedings «Geodynamics and Stress State of the Earth’s Interior» [in Russian], IGD SO RAN, Novosibirsk (2006).


ROCK FAILURE


PARAMETERS FOR IMPACT FRACTURE OF BRITTLE MATERIALS BY PLASTIC SUBSTANCES
A. P. Tapsiev and D. A. Tsygankov

The paper describes the theoretical and experimental data on fracturing brittle materials with the use of plastic substances. The authors substantiate a method of calculating a fracture dimension depending on the characteristics of the plastic substance applied and the fractured material. It is recommended on the selection of impact fracturing equipment.

Hole, plastic substance, rod, impact device, injection, fracture, crack

REFERENCES
1. O. P. Alekseenko and A. M. Vaisman, «Propagation of a round hydrofracture in an elastic space under plastic material injection,» Prikl. Matem. Mekh., 57, No. 6 (1993).
2. V. V. Sokolovsky, The Plasticity Theory [in Russian], Vyssh. Shk., Moscow (1969).
3. D. A. Tsygankov, «New rock breaking method,» Russian Mining, No. 3 (2005).
4. D. A. Tsygankov, «New technologies of the directional fracturing in construction,» Izv. Vuzov, Stroit., No. 9 (2004).
5. K. I. Ivanov, Drilling Method for Mineral Mining [in Russian], Nedra, Moscow (1975).
6. N. G. Kyu and D. A. Tsygankov, «Method for directional failure of rocks by plastic substances,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2003).


MINERAL MINING TECHNOLOGY


METHODICAL PRINCIPLES FOR PLANNING THE MINING AND LOADING EQUIPMENT CAPACITY FOR OPEN CAST MINING WITH THE USE OF DUMPERS. PART I
S. G. Molotilov, V. I. Cheskidov, and V. K. Norri

Based on the analysis of the known calculation methods for the capacity of shovels and loaders at open cast mines, the authors have shown the expediency of the development and computer realization of a procedure for planning the shovel and loader capacity at open cast mines thus increasing the open cast mine planning efficiency due to a large number of optimization parameters, high operational efficiency and accuracy of the calculations.

Excavators, loader, face, capacity, procedure

REFERENCES
1. V. V. Rzhevsky, Open Cast Mining Processes [in Russian], Nedra, Moscow (1978).
2. Standard Production Quotas for Open Cast Mining Industries. Part IV: Rock Excavation and Dumper Haulage [in Russian], NII Truda, Moscow (1989).
3. Open Cast Mining Engineer’s Handbook [in Russian], Nedra, Moscow (1989).
4. Yu. I. Belyakov, Excavation Planning [in Russian], Nedra, Moscow (1983).
5. Yu. I. Belyakov, Improvement of Excavation and Haulage at Open Cast Mines [in Russian], Nedra, Moscow (1977).
6. V. V. Rzhevsky, Open Cast Mining [in Russian], Nedra, Moscow (1985).
7. Open Mining. Handbook [in Russian], Gornoe Byuro, Moscow (1994).
8. N. V. Mel’nikov, Open Cast Mining: Theory and Practice [in Russian], Nauka, Moscow (1973).
9. Yu. I. Belyakov and V. M. Vladimirov, Improvement of Excavation at Open Cast Mines [in Russian], Nedra, Moscow (1974).
10. A. V. Biryukov, V. I. Kuznetsov, and A. S. Tashkinov, Statistical Models in Mining [in Russian], Kuzbassvuzizdat, Kemerovo (1996).
11. K. N. Trubetskoy, «Scientific bases for application of loaders to open cast mining,» Doctoral Thesis [in Russian], Moscow (1989).
12. B. Kh. Yusupbekov, Interaction of Loading and Hauling Machinery at Open Pit Mines in Kazakhstan [in Russian], Nauka, Alma-Ata (1972).
13. Problems of Open Pit Field Opening-Up [in Russian], IGD SO AN SSSR, Novosibirsk (1972).
14. Yu. I. Belyakov, Excavation and Loading at Open Pits [in Russian], Nedra, Moscow (1987).
15. M. I. Shchadov, K. E. Vinnitski, M. G. Potapov, et al., Development of the Machinery and Technology for Open Coal Mining [in Russian], Nedra, Moscow (1969).
16. B. R. Rakishev, Prediction of Technological Parameters for Shattered Rocks at Open Casts [in Russian], Alma-Ata (1983).
17. V. S. Kvaginidze, Operation of the Open Cast Mining and Haulage Equipment in the Conditions of the North [in Russian], MGGU, Moscow (2002).
18. P. I. Tomakov, Overall Mechanization Structure for the Cyclic Open Cast Mining [in Russian], Nedra, Moscow (1976).
19. Amendment to the Standard Production Quotas for Open Cast Mining Industries. Excavation and Haulage. Part III: Rock Excavation and Dumper Haulage [in Russian], Nedra, Moscow (1982).
20. N. V. Mel’nikov, Quick-Reference Book for Open Mining [in Russian], Nedra, Moscow (1982).


THE POTENTIAL OF TECHNOGENIC FORMATIONS IN MINES OF THE WEST SIBERIA
P. A. Filippov

The profit expectations of treating the technogenic formations in mines of the West Siberia are assessed based on the analytical studies. The innovative processing technologies will allow production of marketable concentrates, extraction of noble and rare metals and manufacturing of fractioned ballast stone.

Mine, tailings, valuable metals, extraction, technology

REFERENCES
1. Digest, Russia in Figures [in Russian], Moscow (2006).
2. K. N. Trubetskoy, V. N. Umanets, and M. B. Nikitin, «Technogenic formations: rating, categories, definitions,» Gorn. Zh., No. 1 (1989).
3. O. S. Krasnov and V. A. Salikhov, «Outlook for the production of rare and noble metals from coal washery wastes in Kuzbass,» Tsvet. Metally, No. 8 (2007).
4. P. A. Filippov, V. A. Uskov, and A. M. Freidin, «Prospects for technogenic material retreatment at Sheregesh Mine,» in: High Mineral Mining and Processing Technologies [in Russian], IGD SO RAN, Novosibirsk (2003).
5. A. P. Gaidin, P. A. Filippov, A. M. Freidin, and S. A. Neverov, «Innovation technologies for the development of technogenic formations in Gornaya Shoria,» in: International Forum on the Challenges and Prospects of Innovation Economical Development in Kuzbass [in Russian], Kemerovo (2008).
6. A. M. Freidin, P. A. Filippov, A. P. Gaidin, et al., «Russian Federation Patent No. 2190027. Processing technique for the iron-ore industry wastes,» Byull. Izobret., No. 27 (2002).


UNDERGROUND MINING TECHNIQUE SELECTION BY MULTICRITERION OPTIMIZATION METHODS
M. Yavuz and S. Alpay

The authors propose a number of modified versions of well-known multicriterion optimization methods and discuss their application to select an optimal underground chromite mining technique.

Deposit, mining method, alternative, multicriterion optimization, evaluation, problem, solution, selection, weight, definition

REFERENCES
1. H. L. Hartman and J. M. Mutmansky, Introductory Mining Engineering, John Wiley & Sons Inc., New Jersey (2002).
2. A. Kahriman, A. Ceylano?lu, A. Demirci, E. Arpaz, and K. G?rg?l?, «Selection of optimum underground mining method for Kayseri Pinarbasi-Pulpinar chromite ore,» Bulletin of Chamber of Mining Engineers of Turkey, 25, No. 4 (1994).
3. M. R. Bitarafan and M. Ataei, «Mining method selection by multiple criteria decision making tools,» J. South Afr. Ins. of Min. and Met., 104, No. 9 (2004).
4. A. Kesimal and A. Bascetin, «Application of fuzzy multiple attribute decision making in mining operations,» 11, No. 1 (2002).
5. B. Samanta, B. Sarkar, and S. K. Murherjee, «Selection of opencast mining equipment by a multi-criteria decision-making process,» Mining Technology, Trans. Inst. Min. Metall. A, 111 (2002).
6. V. N. Kazakidis, Z. Mayer, and M. J. Scoble, «Decision making using the analytic hierarchy process in mining engineering,» Mining Technology, Trans. Inst. Min. Metall. A, 113 (2004).
7. A. Bascetin, «An application of the analytic hierarchy process in equipment selection at Orhaneli open pit coal mine,» Mining Technology, Trans. Inst. Min. Metall. A, 113 (2004).
8. M. Ataei, «Selection of alumina-cement plant location with application of multicriteria estimation method,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (2005).
9. T. L. Saaty and M. S. Ozdemi, «Why the magic number seven plus or minus two,» Mathematical and Computer Modelling, 38 (2003).
10. M. S. Ozdemir, «Validity and inconsistency in the analytic hierarchy process,» Applied Mathematics and Computation, 161, 2005.
11. T. L. Saaty, Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process, RWS Publications, Pittsburg, PA (2000).
12. T. L. Saaty, The Analytic Hierarchy Process, McGraw-Hill Publications, USA (1980).
13. C. Chen and C. M. Klein, «An efficient approach to solving fuzzy MADM problems,» Fuzzy Sets and Systems, 88 (1996).
14. R. R. Yager, «Fuzzy decision making including unequal objectives,» Fuzzy Sets and Systems, 1 (1978).
15. R. E. Bellman and L. A. Zadeh, «Decision Making In a Fuzzy Environment,» Management Science, 17 (1970).
16. L. A. Zadeh, «Outline of a new approach to the analysis of complex systems and decision process,» IEEE Transactions, 3 (1973).
17. C. L. Hwang and K. Yoon, Multi Attribute Decision Making Methods and Applications, Springer-Verlag, USA (1981).
18. Yu. A. Dubov, S. I. Travkin, and V. N. Yakimets, Multicriterion Models for Formation and Selection of a System Variant [in Russian], Nauka, Moscow (1986)


GPS TELEMETRY OF ENERGETIC-TECHNICAL AND TECHNOLOGICAL PARAMETERS AT OPEN PIT MINES
Slobodan Vujic, Borislav Zajic, Igor Miljanovic, and Aleksandar Petrovski

Application of GPS in mining and geology has proved to be of ever increasing importance since recently. GPS is used for positioning both researching and exploitation drill holes, mining facilities, equipment, machines, when monitoring slopes and falls, mining facilities dimensioning, navigation of machines, roads tracing, etc. The paper presents a pilot system for surveillance and monitoring of energetic and technological parameters at open pit mines, developed at the «Jazovnik» open pit mine for experimental purposes.

Mining, GPS, surveillance, management, energetic efficiency

REFERENCES
1. N. Ackroyd, «GPS gives miners the Midas touch,» Trimble Nav. Europe, Issue 10 (1996).
2. S. Smith, «Machine guidance systems in open pit mines,» in: Trimble Navigation (1996).
3. «Trimble. GPS for mining,» in: Application & Technical Notes (1996).
4. «Trimble. Fleet vision for windows,» in: Vehicle and Asset Positioning Software for Windows, Mobile Positioning Products (1996).
5. S. Vujic and Z. Jovanovic, «GPS in mining and geology,» in: Proceedings of the 1st Yugoslav Seminar of GPS-Technology Application in Mining and Geology [in Serbian], Belgrade (1997).
6. S. Vujic, et al., «GPS-technology application for spatial positioning of machinery at open pit mines,» in: Proceedings of the 1st Yugoslav Meeting on GIS Technologies [in Serbian], Belgrade (1996).
7. S. Vujic, et al., «GPS-system of dynamic measurements and operations monitoring at clay open pit mines,» in: Proceedings of the Clay Exploitation Symposium [in Serbian], Kanjiza (1995).
8. S. Vujic, I. Miljanovic, and A. Petrovski, «GPS supported systems for surveillance and monitoring of energetic and technological parameters at open pit mines,» in: Modern Techniques and Technologies in Mining, Stip, Macedonia (2006).
9. S. Vujic, «A computer monitoring-management system for a continuous technological complex of the «Majdan III» open pit mine: architecture of the system and the results achieved,» in: Continuous Surface Mining, Stand und Perspektiven der Kontinuierlichen Tagebautechnik, the 6th International Symposium ISCSM, Freiberg (2001).
10. S. Vujic, M. Zunic, and S. Maksimovic, «Basic design elements of a monitoring-management system for the «Tamnava Zapadno Polje» coal open pit mine,» in: LIFE 2000 — Lignite Innovations for Future in Europe, Freiberg (2000).


MINERAL DRESSING


USE OF FLUORINATED ALCOHOLS TO INTENSIFY COPPER-NICKEL ORE GRINDING
G. R. Bochkarev, S. A. Kondrat’ev, V. I. Rostovtsev, V. V. Fomenko*, and Yu. S. Kargapolov*

The experimental data are reported on intensification of the copper-nickel grinding by feeding fluorinated saturated mono-atomic alcohols of a general formula H — (CF2CF2)n — CH2 — OH into a mill. The feeding of this reagent into a mill at the rate of 25 — 100 g/t of feed provides better exposure of aggregates in the ore preparation circuit thus intensifying the subsequent ore flotation. The increment of copper and nickel recovery into a concentrate amounts to more than 4 %.

Grinding, exposure, copper-nickel ore, fluorinated alcohols, flotation

REFERENCES
1. V. A. Chanturia, «Contemporary problems of mineral raw material beneficiation in Russia,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1999).
2. K. N. Trubetskoy (Ed.), Mining Sciences. Development and Conservation of Mineral Resources of the Earth [in Russian], Akad. Gorn. Nauk, Moscow (1997).
3. E. D. Shchukin, Rebinder Effect. Science and Mankind [in Russian], Nauka, Moscow (1970).


EFFECT EXERTED BY STRUCTURAL FEATURES OF COPPER-ZINC ORES ON THEIR OXIDATION AND TECHNOLOGICAL PROPERTIES
V. E. Vigdergauz, D. V. Makarov*, I. V. Zorenko*, E. V. Belogub**, M. N. Malyarenok**, E. A. Shrader, and I. N. Kuznetsova

Modeling the oxidation of pyrite copper-zinc ores under evaporization shows that structural features of ores influence the process kinetics, and displays new-formed mineral phases, namely, gannigite, biankite, chalcanthite, which relate with sulfate generating on evaporation from natural and process waters at pyrite deposits. The oxidation effect on the mineral flotation properties is described.

Pyrite copper-zinc ore, oxidation, flotation

REFERENCES
1. V. A. Bocharov and V. A. Ignatkina, «Mineral beneficiation technology,» in: Ore and Metals [in Russian], Vol. 1, Moscow (2007).
2. V. M. Avdokhin, Sulfide Mineral Oxidation on Dressing [in Russian], Nedra, Moscow (1989).
3. V. A. Chanturia, V. N. Chaplygin, and V. E. Vigdergauz, «Resource-saving technologies for mineral processing and environmental protection,» Gorny Zh., No. 2 (2007).
4. V. A. Chanturia, V. N. Makarov, and D. V. Makarov, Ecological and Technological Problems in Technogenic Sulfide-Bearing Material Processing [in Russian, KNTS RAN, Apatity (2005).
5. E. M. Kosikov, «Improving the storage of nonferrous metal ore beneficiation tailings,» in: Rational Processing Technologies for Nonferrous Metal Ores [in Russian], Unipromed, Sverdlovsk (1990).
6. G. M. Ritcey, Tailings Management. Problems and Solutions in the Mining Industry, Elsevier, New York (1989).
7. V. A. Chanturia, D. V. Makarov, T. A. Trofimenko, V. N. Makarov, and T. N. Vasil’eva, «Change in technological properties of technogenic sulfide-contained raw material in the storage process,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (2000).
8. V. A. Chanturia and V. E. Vigdergauz, Electrochemistry of Sulfides: Theory and Practice of Flotation [in Russian], Nauka, Moscow (1993).
9. G. B. Sveshnikov, Electrochemical Process at the Sulfide Deposits [in Russian], LGU, Leningrad (1967).
10. P. Clarke, D. Fornasiero, J. Ralston, and R. St. C. Smart, «A study of the removal of oxidation products from sulfide mineral surfaces,» Minerals Engineering, No. 11 (2005).
11. E. V. Belogub, E. P. Shcherbakova, and N. K. Nikandrova, "Sulfates of the Urals: Spread, Stallochemistry, Genesis [in Russian], Nauka, Moscow (2007).
12. V. A. Chanturia, V. N. Makarov, D. V. Makarov, T. N. Vasil’eva, V. V. Pavlov, and T. A. Trofimenko, «Influence exerted by storage conditions on the change in properties of copper-nickel technogenic products,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2002).
13. D. A. Shvedov, «Hypothesis on whys of ready floatability of sulfide minerals and difficult flotability of oxidized minerals,» Gorny Zh., No. 6 (1936).
14. I. N. Plaksin, Mineral Dressing. Collected Works [in Russian], Nauka, Moscow (1970).


NEW METHODS AND INSTRUMENTS IN MINING


MECHANICAL TRIAXIAL COMPRESSION MACHINES
E. A. Fedorova

The author describes the design of the mechanical triaxial compression machine, its capabilities, test procedure and data processing results, and some of metrology issues. The machine approval on fracture sand-and-clay rocks is exemplified.

Triaxial compression machine, design, mechanical loading, test, sample volume, stress

REFERENCES
1. State Standard 26518–85. Soils. Laboratory Determination of Strength Characteristics and Deformability under Triaxial Compression [in Russian], Izd. Standartov, Moscow (1985).
2. A. Bishop and D. Henkel, Measurement of Soil Properties in the Triaxial Test, 2nd Rev. Ed., Hodder Arnold H&S, London (1976).
3. A. K. Bugrov, R. M. Narbut, and V. P. Sipidin, Triaxal Compression of Soils [in Russian], Stroyizdat, Leningrad (1987).
4. A. O. Kryzhanovskaya, T. Mendosa, and E. Ukibaev, «Shear resistance of granular soil mixture,» Inzh. Geolog., No. 2 (1982).


Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2019. Информация о сайте