Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Знак «Шахтерская слава» Лаборатория механики деформируемого твердого тела и сыпучих сред Лаборатория механизации горных работ
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2008 год » JMS, Vol. 44, No. 5, 2008

JMS, Vol. 44, No. 5, 2008

GEOMECHANICS


CONNECTION BETWEEN THE DEFORMATION PROPERTIES OF ROCK JOINTS AND THEIR FRACTAL DIMENSION
L. A. Nazarov and L. A. Nazarova

The mechanism of interaction between the edges of discontinuities under the normal loading is proposed based on the elastic-brittle model of a rock mass. The respective constitutive relationships are synthesized by numerical experiments, and the functional dependence of an average normal rigidity of a joint on the fractal dimension of its edge is established.

Rock mass, discontinuity, fractal dimension, normal rigidity, finite element method

REFERENCES
1. M. A. Sadovsky, L. G. Bolkhovitinov, and V. F. Pisarenko, Deformation of a Medium and the Seismic Process [in Russian], Nauka, Moscow (1987).
2. M. A. Sadovsky, «Natural rock lumpiness,» Dokl. AN SSSR, 247, No.4 (1979).
3. M. V. Kurlenya, V. N. Oparin, and A. A. Eremenko, «Relation of linear block dimensions of rock to crack opening in the structural hierarchy of masses,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1993).
4. S. A. Yufin, «Mechanical processes in an intact rock mass and their interaction with underground structures,» Thesis of Dr. Tech. Sci. [in Russian], MGI, Moscow (1991).
5. N. R. Barton, «A model study of rock-joint deformation,» Int. J. of Rock Mech. and Min. Sci., No. 9 (1972).
6. N. R. Barton, «Deformation phenomena in jointed rock,» Geotechnique, 36, No. 2 (1986).
7. A. A. Baryakh, S. A. Konstantinova, and V. A. Asanov, Deformation of Salt Rocks [in Russian], UrO, RAN, Ekaterinburg (1996).
8. G .G. Kocharyan and A. A. Spivak, Deformation Dynamics of Block Rock Masses [in Russian], IKTs Akademkniga, Moscow (2003).
9. A. V. Leont’ev and L. A. Nazarov, «Determination of stiffness factors for the contact between blocks of rock,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1994).
10. L. A. Nazarov, and L. A. Nazarova, «Use of data on rock specimen tests to derive equations for discontinuity state,» DAN, 365, No. 2 (1999).
11. I. G. Goryacheva, Mechanics of Friction Interaction [in Russian], Mir, Moscow (2001).
12. L. V. Nikitin, Statics and Dynamics of Solids with External Dry Friction [in Russian], Moskovski Litsei, Moscow (1998).
13. F. P. Bowden and D. Tabor, «The friction and lubrication of solids,» Oxford, Clarendon Press, 1 (1950).
14. B. B. Mandelbrot, The Fractal Geometry of Nature, Freeman, San Francisco (1983).
15. Y. H. Lee, J. R. Carr, D. J. Barr, and C. J. Haas. «The fractal dimension as a measure of the roughness of rock discontinuities profile,» Int. J. Rock Mech. Min. Sci. Geomech. Abs., 27, No. 6 (1990).
16. N. Turk, M. J. Grieg, W. R. Dearman, and F. F. Amin. «Characterization of rock joint surfaces by fractal dimension,» in: Proceedings of the 28th US Symposium on Rock Mechanics, Tucson, Balkema, Rotterdam (1987).
17. J. P. Seidel and C. M. Haberfield, «Towards an understanding of joint roughness,» Rock Mechanics and Rock Engineering, 28, No. 2 (1995).
18. S. Bandis, A. C. Lumsden, and N. R. Barton, «Experimental studies of scale effects on the shear behavior of rock joints,» Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 18, No. 1 (1981).
19. R. Goodman, Introduction to Rock Mechanics, John Wiley&Sons, New York, Chichester, Toronto (1980).
20. J. Lemaitre, A Course of Damage Mechanics, 2nd Edition, Springer, Berlin, Heidelberg, New York (1996).
21. L. A. Nazarov and L. A. Nazarova," Estimate of the interchamber pillar stability based on the damage accumulation criterion," Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2007).
22. A. V. Lavrov, V. L. Shkuratnik, and Yu. L. Filimonov, Acoustic-Emission Memory Effect in Rocks [in Russian], MGGU, Moscow (2004).
23. A. N. Stavrogin and E. V. Lodus, «Creep and time dependence of rock strength,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No.6 (1974).
24. L. A. Nazarova, «Stress state of a sloping-bedded rock mass around a working,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1985).


IMPLEMENTATION OF THE CALCULATION METHOD FOR STRESS STATE IN ROCK MASS WITH BACKFILL
V. M. Seryakov

The author presents a method for calculating stress-strain state of host rocks and filling masses with allowance for the sequence of underground mining, and determines the stress filed redistribution in the course of extraction of flat-dipping ore bodies and of the reserves under open pit bottom. The mining variants most preferred from the geomechanical viewpoint are substantiated.

Rock mass, stress state, numerical modeling, initial stress method, mining sequence, mining under open pit bottom, ascending and descending extraction

REFERENCES
1. M. V. Kurlenya, V. M. Seryakov, and A. A. Eremenko, Technogenic Geomechanical Stress Fields [in Russian], Nauka, Novosibirsk (2005).
2. O. V. Ovcharenko, I. I. Ainbinder, K. Yu. Shalin, and N. P. Kramskov, «Geomechanical substantiation of the parameters for underground mining of «Mir» kimberlite pipe,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2002).
3. V. D. Baryshnikov and L. N. Gakhova, "Geomechanical substantiation of access roads and stope faces in upward mining of the reserves subjacent the open pit bottom in terms of the mine «Aikhal,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (2008).
4. A. B. Fadeev, Finite Element Method in Rock Mechanics [in Russian], Nedra, Moscow (1987).
5. S. V. Kuznetsov, V. N. Odintsev, M. E. Slonim, and V. A. Trofimov, The Rock Pressure Calculation Methodology [in Russian], Nauka, Moscow (1981).
6. M. O. Baimbetov and V. M. Seryakov, «Influence of the subsequence of stoping and filling on the stress-strain state of rock masses,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1984).
7. O. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill (1971).
8. V. M. Seryakov, «On one approach to calculation of the stress-strain state of a rock mass in the vicinity of a goaf,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1997).
9. V. M. Seryakov, «Calculation of the stress state of rocks with regard for sequence of filling mass formation,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2001).
10. M. V. Kurlenya, V. N. Oparin, A. P. Tapsiev, and V. V. Arshavskii, Geomechanical Interaction of the Host Rocks and Filling Mass at Sheet Ore Deposits [in Russian], Nauka, Novosibirsk (1997).


CHARACTERISTICS AND THE RELATIONS ON THEM AT THE STAGE OF POST-LIMIT DEFORMATION IN
A. I. Chanyshev and I. M. Abdulin

For the case of plane strain and with Coulomb — Mohr’s criterion for rocks, the authors constructed the post-limit deformation equations that coincide in form with the plastic flow theory. It is shown that the system of differential equations is hyperbolic. The authors also obtained four characteristics that are nonorthogonal by symmetric relative to the first principal direction, and determined relations on the characteristics. It is found that solution of problems on failure requires that both the stress vector and displacement vectors are assigned at the contour where failure begins.

Post-limit deformation, plane strain, characteristics, relations on characteristics

REFERENCES
1. J. Goodier, «Mathematical theory of equilibrium cracks,» in: Fracture, Vol. 2, Academic Press, New York and London (1968).
2. C. G. Liebowitz, «Mathematical theory of brittle fracture,» in: Fracture, Vol. 2, Academic Press, New York and London (1968).
3. J. Rice, «Mathematical methods in failure mechanics,» in: Fracture, Vol. 2, Academic Press, New York and London (1968).
4. O. Zienkiewicz, The Finite Element Method in Engineering Science, McGraw-Hill (1971).
5. M. M. Muzdakbaev and V. S. Nikiforovski, «Compressive strength of materials,» Prikl. Mekh. Tekh. Fiz., No. 2 (1978).
6. V. M. Seryakov, «On one approach to calculation of the stress-strain state of a rock mass in the vicinity of a goaf,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1997).
7. A. J. Durelli and R. H. Jacobson, «Brittle-material failures as indicators of stress-concentration factors,» Exp. Mech., 2, No. 3 (1962).
8. E. Z. Lajtai, «Brittle fracture in compression,» Int. J. Fract., 10, No. 4 (1974).
9. S. V. Suknev and M. D. Novopashin, «Criterion of normal tension crack formation in rocks under compression,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (2003).
10. I. V. Baklashov, Deformation and Failure of Rock Masses [in Russian], Nedra, Moscow (1988).
11. V. V. Novozhilov, «Connections of stresses and strains in the initially isotropic inelastic bodies (geometrical aspect),» Prikl. Mekh. Mat., 27, No. 5 (1963).
12. A. I. Chanyshev, «Elastic relations for rocks. Deformation plasticity theory,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1986).
13. S. A. Khristianovich and E. I. Shemyakin, «Plane deformation of a plastic material under complex loading,» Mekh. Tverd. Tela, No. 5 (1969).
14. G. Korn and T. Korn, Handbook on Mathematics for Scientists and Engineers [in Russian], Nauka, Moscow (1986).
15. A. P. Bobryakov, «Slip lines in the loose medium with the initial homogeneity and anisotropy,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2002).


ANALYSIS OF SAFETY PRECAUTIONS FOR COAL AND GAS OUTBURST-HAZARDOUS STRATA
V. Hudecek

The author analyses coal and gas outbursts and generalizes the available data on the approaches to solving the problematics of these gas-dynamic events in the framework of Czech Republic Grant «Estimate of the Safety Precautions for Coal and Gas Outburst Hazardous Strata».

Coal and gas outburst, outburst hazard prediction, prevention, degassing, water treatment

REFERENCES
1. V. Hudecek, Statistical Estimate of Data on Coal and Gas Outbursts in «Starzhich» Mine, Paskov Co., Technical University, Ostrava (2006).
2. V. Hudecek, Solution of Coal and Gas Outbursting Problematics, Technical University, Ostrava (2004).
3. R. Soika, «Influence of the stress-strain state near the stoping front on the parameters measured for the current prediction of coal and gas outbursts,» in: Minerals, Raw Materials and Mining Activity of the 21st Century, Ostrava (1997).
4. N. F. Kusov, V. N. Kazak, and V. I. Kapralov, «Choosing rational distance between degassing channels in underground coal mining,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1989).
5. A. G. Airuni, M. A. Iofis, and V. I. Chernyaev, «Predicting the stress and gasdynamic state of coal seams subjected to the mutual effect of overmining and undermining,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1985).
6. M. V. Muchnik, «Calculation of methane release from black coals,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (1975).
7. V. Hudecek, Foreign Experience, Information and Trends in the Problematics of Rock and Gas Outbursting, Technical University, Ostrava (2006).
8. V. Hudecek, L. Logacheva, P. Urban, and P. Mikhalcik, Safety Regulations for Rock and Gas Outbursts in Foreign Countries, Technical University, Ostrava (2007).
9. I. Lat and D. Micek, «Application of computational techniques to the problematic of gas-dynamic events in deep mines,» J. Uhli, No. 3 (1991).
10. I. Lat, V. Hudecek, et al., «Application of the numerical model of gas-dynamic events for a specific prediction,» Project for NII Ostrava — Radwanice, Stages 3 and 7 (1986).


ROCK FAILURE


MODELING THE AXIALLY SYMMETRIC CRACK GROWTH UNDER BLASTING AND HYDROFRACTURING NEAR FREE SURFACE
E. N. Sher and A. M. Mikhailov

The authors developed the calculation procedures for equilibrium of an elastic body with spatial cracks by using the boundary element method and Peach — Koehler approach, and implement these procedures in terms of the axially symmetric crack growth in the elastic half-space under the action of internal pressure as a model of rock failure by hydrofracturing or blasting near free surface.

Numerical modeling, elastic space, boundary element method, axially symmetric crack growth, hydrofracturing, blasting, free surface

REFERENCES
1. Mi. Yaoming, «Three-dimensional analysis of crack growth,» in: Computational Mechanics Publications Southampton UK and Boston USA, 28 (1996).
2. М. Peach and J. S. Koehler, «The forces exerted on dislocations and the stress fields produced by them,» Physical Review, 80, No. 3 (1950).
3. V. V. Novozhilov, «Bases of the theory of equilibrium cracks in elastic bodies,» Prikl. Mekh. Mat., 33, Issue 5 (1969).
4. A. M. Mikhailov, «Calculation of the stresses around a crack,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2000).
5. A. M. Mikhailov, «Calculation of elastic energy release during crack development,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (2001).


MECHANISM OF WALL CAVING IN MURUNTAU OPEN PIT MINE
A. G. Bagdasar’yan, B. G. Lukishin, and P. A. Shemetov

Interrelation between movements in walls of an open pit mine and formation of fracture pattern in host rocks is considered.

Rock mass, block structure, discontinuities, stress relaxation, granulometric composition, failure of open pit wall

REFERENCES
1. V. N. Rodionov, «Dissipative structures in geomechanics,» Usp. Mekh., 4, No. 2 (1979).
2. V. N. Rodionov, I. A. Sizov, «Model of solid body of dissipative structure for geomechanics,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (1988).
3. V. N. Rodionov, I. A. Sizov, and V. M. Tsvetkov, Fundamentals of Geomechanics [in Russian], Nauka, Moscow (1986).
4. V. N. Rodionov, A. G. Bagdasar’yan, and V. M. Kol’tsov, «Correlation between the granular composition of an exploded rock mass and other manifestations of the rock mass structure,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 5 (1982).
5. V. N. Rodionov and A. G. Bagdasar’yan, «Surface irregularities and structures of rock in place,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1985).
6. A. G. Bagdasar’yan, B. G. Lukishov, V. N. Rodionov, and A. S. Fedyanin, «Detection of features of rupture structure in walls of an open pit in terms of the Muruntau open pit,» Fiz.-Tech. Probl. Razrab. Polezn. Iskop., No. 1 (2008).


SCIENCE OF MINING MACHINES


SOURCES FOR PRODUCTIVITY GAIN IN VIBRO-IMPACT DRIVING OF STEEL ELEMENTS IN SOIL IN SPECIAL CONSTRUCTION TECHNOLOGIES
B. N. Smolyanitskii, I. V. Tishchenko, V. V. Chervov, V. P. Gileta, and Yu. V. Vanag

The authors consider how the impact frequency affects the penetration velocity of a metal case pipe and describe physical simulation of driving an element into soil by a pneumatic percussion device with step-wise adjustment of its impact frequency.

Trenchless driving, impact impulse, driving velocity, impact frequency

REFERENCES
1. G. Kyun, L. Shoible, and Kh. Shlik, Underground Driving of Inaccessible Pipelines [in Russian], Stroiizdat, Moscow (1933).
2. A. D. Kostylev, V. P. Gileta, et al., Pneumatic Punchers in Construction [in Russian], Nauka, Novosibirsk (1987).
3. B. N. Smolyanitskii, V. V. Chervov, V. V. Trubitsyn, et al., «New pneumatic percussion machines for peculiar construction operations,» Mekhan. Stroit., No. 7 (1997).
4. B. B. Danilov and B. N. Smolyanitskii, «Methods to gain better efficiency of driving steel pipes into the ground by the pneumatic hammers,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2005).
5. N. A. Tsytovich, Soil Mechanics [in Russian], Vyssh. Shk., Moscow (1979).
6. V. A. Bauman and I. I. Bykhovskii, Vibration Machines and Processes in Construction [in Russian], Vyssh. Shk., Moscow (1977).
7. V. V. Chervov, «Impact energy of pneumatic hammer with elastic valve in back-stroke chamber,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (2004).
8. A. N. Zelenin, Foundations of Soil Destruction [in Russian], Mashinostroenie, Moscow (1968).
9. K. K. Tupitsyn, «Interaction of the pneumatic punchers with soil,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1980).
10. K. S. Gurkov, V. V. Klimashko, A. D. Kostylev, et al., Pneumatic Punchers [in Russian], IGD SO AN SSSR, Novosibirsk (1990).


MODELING DESTRUCTIVE EFFECT EXERTED BY SHEARING DISCS OF HEADING-AND-WINNING MACHINES ON. A. ROCK MASS
B. L. Gerike, P. B. Gerike, V. I. Klishin, and A. P. Filatov

The authors consider the interaction between the heading-and-winning machine cutter tool equipped with shearing discs and the kimberlite rock mass. It is shown that kimberlite is possible to disintegrate with the minimum energy consumption and substantially diminished wear of the cutter tool.

Modeling, shearing discs, kimberlite

REFERENCES
1. B. L. Gerike, V. M. Lizunkin, and M. V. Lizunkin, «Fracture of permafrost sandstones by a cutting tool of winning machines,» Kolyma, Nos. 11 and 12 (1995).
2. B. L. Gerike, A. P. Filatov, P. B. Gerike, and V. I. Klishin, «Concept of a rock-breaking working element of an underground kimberlite ore mining machines,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2006).
3. G. Kunze, A. Ehler, and B. Gerike, «Kontinuierlicher Gewinnunsvorgang im Festgestein,» Surface Mining, Braunkohle & Other Minerals, No. 2 (2001).
4. P. B. Gerike and M. A. Belikov, «Modeling of disc cutting instrument interaction with rock mass,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (2003).
5. B. L. Gerike and P. B. Gerike, «Commercial approbation of a cutting tool for surface mining of hard rocks,» Vestnik KuzGTU, No. 4.1 (2005).
6. A. B. Logov, B. L. Gerike, and A. B. Raskin, Disintegration of Hard Rocks [in Russian], Nauka, Novosibirsk (1989).
7. B. L. Gerike and V. M. Lizunkin, «Energy estimate of the hard rock disintegration quality,» Gorny Zh., No. 6 (1998).
8. B. L. Gerike, «Qualitative characteristics of the process of fracturing of hard rocks with a disc shearing tool and their quantitative assessments,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1991).


MINERAL MINING TECGNOLOGY


NEW UNDERGROUND MINERAL MINING APPROACHES
I. I. Ainbinder, Yu. I. Rodionov, and P. G. Patskevich

The authors offer new solutions for mineral mining. A key idea is the construction of artificial separating masses at the stage of preparing a deposit and its part for exploitation. In terms of the underground mines belonging to «Alrosa» JSC, «GMK Norilsk Nickel», it is shown that the implementation of the new approach will prevent mine workings from aggressive water ingress, secure from other negative factors, and will allow the application of highly productive chamber mining schemes.

Underground geotechnology, preliminary edging, water penetration sealing

REFERENCES
1. D. M. Bronnikov, N. F. Zamesov, and G. I. Bogdanov, Ore Mining at Large Depths [in Russian], Nedra, Moscow (1982).
2. N. F. Zamesov, I. I. Ainbinder, L. I. Burtsev, et al., Development of Highly Productive Techniques for Ore Mining at Large Depths [in Russian], IPKON AN SSSR, Moscow (1990).
3. I. I. Ainbinder, Yu. P. Galchenko, Yu. I. Rodionov, et al., «Russian Federation Patent No. 2306417. Mining method for hard mineral deposits,» (1992).
4. I. I. Ainbinder, Yu. P. Galchenko, P. G. Patskevich, et al., «A new concept of underground geotechnolgy development,» Gorny Zh., No. 1 (2007).
5. V. N. Oparin, I. I. Ainbinder, Yu. I. Rodionov, et al., «Concept of a mine of tomorrow for deep mining at gentle copper-and-nickel deposits,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2007).


SOCIAL BACKGROUND OF UP-DATING THE UNDERGROUND IRON-ORE MINING TECHNOLOGY IN SIBERIA
P. A. Filippov

The author analyzes industrial injuries and diseases in terms of iron-ore mining enterprises in Siberia. It is shown that the harm to health is conditioned by the technology chosen for underground mining. To improve the safety of mining operations, it is recommended to select the sublevel caving method with areal-frontal ore drawing and mobile mining machinery for thick steep deposits.

Mine, safety, injuries, industrial diseases, technology

REFERENCES
1. D. R. Kaplunov, A. I. Sukhoruchenkov, and V. A. Yukov, «Growing share of underground iron-ore mining,» Gorny Zh., No. 4 (2006).
2. N. G. Dubynin, V. A. Kovalenko, A. E. Umnov, and V. N. Vlasov, Underground Ore Mining Technology [in Russian], Nedra, Moscow (1983).
3. P. M. Vol’fson, G. Ya. Shcherbatyuk, V. S. Richko, et al., «Improved safety of mining with vibratory ore drawing,» Gorny Zh., No. 1 (2006).
4. B. V. Shrepp, «Probable mechanism of rock bursts and forecast of their hazard level in mines,» Bezop. Truda Prom., No. 10 (2000).
5. M. V. Kurlenya, A. A. Eremenko, and B. V. Shrepp, Geomechanical Problems of Iron Ore Mining in Siberia [in Russian], Nauka, Novosibirsk (2001).
6. A. M. Freidin., E. N. Koren’kov, P. A. Filippov, et al., «Russian Federation Patent No. 2208162. Sublevel caving as a process for development of mineral deposits,» Byul. Izobret., No. 19 (2003).
7. A. M. Freidin, P. A. Filippov, A. P. Gaidin, et al., «Prospects of technical re-equipment in underground mines of the metallurgy complex in West Siberia,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (2004).
8. P. A. Filippov, «State and perspectives of underground iron-ore mining in Siberia,» Vest. Kuz GTU, No. 4 (2007).


MINERAL DRESSING


EFFECT OF POWERFUL NANOSECOND ELECTROMAGNETIC IMPULSES ON SURFACE AND FLOTATION PROPERTIES OF CARBONATE-BEARING PYRITE AND ARSENOPYRITE
V. A. Chanturia1, I. V. Filippova, L. O. Filippov, M. V. Ryazantseva, and I. Zh. Bunin1 

The effect of arsenopyrite and carbonate gold-bearing pyrite from the Darasunsk deposit has been studied. X-ray-phase diffractometry, X-ray photoelectronic and IR Fourier-spectroscopy, and raster electronic microscopy were employed in investigations. It was established that the alteration of the phase composition of surface depends non-linearly on terms of treatment (dry or wet) and the number of electromagnetic impulses used and has appreciable influence on oxidation and hydrophobicity of minerals, thus allowing the selective separation of pyrite from arsenopyrite by flotation in the neutral medium.

Pyrite, arsenopyrite, calcite, oxidation, elemental sulfur, electromagnetic impulses, selective flotation

REFERENCES
1. V. A. Chanturiya, «The current problems of mineral processing in Russia,» Gorn. Zh., No. 12 (2005).
2. K. E. Haque, «Microwave energy for mineral treatment processes — a brief review,» Int. J. Miner. Process. No. 57 (1999).
3. V. A. Chanturiya, I. Zh. Bunin, V. D. Lunin, Yu. V. Gulyaev, N. S. Bunina, V. A. Vdovin, P. S. Voronov, A. V. Korzhenevskii, and V. A. Cherepenin, «Use of high-power electromagnetic pulses in processes of disintegration and opening of rebellious gold-containing raw material,» Journal of Mining Science, No. 37 (2001).
4. V. A. Chanturiya, K. N. Trubetskoi, S. D. Viktorov, I. Zh. Bunin, Nano-particles in Processes for Destructure and Exposureof Geomaterials [in Russian], IPKON RAN, Moscow (2006).
5. V. C. Farmer, The Infrared Spectra of Minerals, Mineralogical society, London (1974).
6. V. A. Chanturiya, I. Zh. Bunin, and A. T. Kovalev, «On the field emission properties of the sulfide minerals under high-power nanosecond pulses,» Bulletin of the Russian Academy of Sciences, Physics, 71, No. 5 (2007).
7. Ph. Donato, C. Mustin, R. Benoit, and R. Erre, «Spatial distribution of iron and sulfur species on the surface of pyrite,» Applied Surface Science, No. 68 (1993).
8. J. P. Baltrus and J. R. Dielh, «An investigation of the weathering behaviour of coal-derived pyrite surfaces by X-ray photoelectron spectroscopy,» Fuel, 73, No. 2 (1994).
9. P. Forest Walker, Madeline E. Schreiber, and J. Donald Rimstidt, «Kinetics of arsenopyrite oxidative dissolution by oxygen,» Geochimica et cosmochimica Acta, 70, issue 7 (2006).
10. A. K. Pikaev, Modern Radiation Chemistry. Radiolysis of Gases and Liquids [in Russian], Nauka, Moscow (1986).
11. V. L. Bugaenko and V. M. Byakov, Qualitative Model of Radiolysis of Liquid Water and Diluted Solutions of Н2, О2, Н2О2. Influence of Radiation Character and Medium рН on Radoilysis under Action of γ-Rays and Fast-Moving Electrons, Preprint, Moscow (1991). 12. A. R. Аnderson and E. R. Hart, «Radiation chemistry of water with pulsed high intensity electron beams,» J. Phys. Chem., 66, No. 1 (1962).
13. S. Ya. Pshezhetsky, Radiation and Chemistry [in Russian], Energoatomizdat, Msocow (1983).
14. V. V. Krymsky and E. V. Litvinova, Properties of Substances under Radiation by Electromagnetic Impulses [in Russian], Izd. ChTGu, Chita (1997).
15. Hu Guilin, Kim Dam-Johansen, Wedel Stig, and Hansen Peter Jens, «Decomposition and oxidation of pyrite,» Progress in Energy and Combustion Science, No. 3 (2006).
16. Handbook of Chemistry and Physics. CRS Press (R. C. West Ed.)
17. L. Tournorten, F. Berger, C. Mavon and A. Chambaudet, «Calcium sulphate formation during the heat-up period: some essential parameters,» Applied Clay Science, 14, Issue 5–6 (1999).
18. Scaufub G. Andrea, Nesbitt Wayne H., Kartio Ilkka, Laajalehto Kari, Bancroft G. Michael, and Szargan Rudiger, «Incipient oxidation of fractured surfaces in air,» J. Electron Spectroscopy and Related Phenomena, No. 96 (1998).
19. Q. Zhang, Z. Xu, V. Bozkurt, and J. A. Finch, «Pyrite flotation in presence of metal ions and sphalerite,» Int. J. Miner. Processing, No. 52 (1997).


Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2018. Информация о сайте