Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Знак «Шахтерская слава» Лаборатория механики деформируемого твердого тела и сыпучих сред Кольцевые пневмоударные машины для забивания в грунт стержней
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2009 год » JMS, Vol. 45, No. 2, 2009

JMS, Vol. 45, No. 2, 2009


A. P. Bobryakov and A. F. Revuzhenko

The experimental results of modeling geomedium around a mine working are reported. Two families of spiral slip lines are reproduced on a granular material. One or two families of log spiral slip lines arise around a cylindrical foreign body simulating a supported mine working. It is shown that shears on the lines of different families develop irregularly.

Mine working, simulation, granular material, shear, slip lines

1. N. S. Bulychev, Mechanics of Underground Constructions: Examples and Problems [in Russian], Nedra, Moscow (1989).
2. A. F. Revuzhenko, S. B. Stazhevskii, and E. I. Shemyakin, «New procedures for calculation of loads on supports,» Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1976).
3. R. Goodman, Introduction to Rock Mechanics, 2nd Edition, John Wiley & Sons, London (1988).
4. A. D. Tomlenov, Mechanics of Metal Processing under Pressure [in Russian], Gosnauchtekhizdat Mashinostr. Lit., Moscow (1963).
5. V. V. Sokolovsky, Theory of Plasticity [in Russian], Vyssh. Shk., Moscow (1969).
6. M. C. Steel and John Young, «An experimental investigation of over-straining in mild-steel thick-walled cylinders by internal fluid pressure,» Transactions of the ASME, April (1952).
7. A. P. Bobryakov and A. F. Revuzhenko, «On the test method for inelastic materials,» Izv. AN SSSR, Mekh. Tverd. Tela, No. 4 (1990).
8. S. S. Grigoryan, A. A. Amandosov, V. N. Lisitsin, and A. Zh. Teleushev, Experimental Investigation into Friction Coefficient of Plastic Deformation. Dynamics of the Continuum [in Russian], Nauka, Alma-Ata (1982).

V. E. Mirenkov

The paper analyzes probable failure conditions in an undercut piecewise-homogenous rock mass due to the low tension and compression strength limits as against the compression. The author derives singular integral equations for the determination of the stress jumps at different rock strata interfaces and considers numerical result.

Stress, displacement, rock strata, equations, solution, elasticity, singularity, disintegration, failure

1. E. I. Shemyakin, K. L. Fisenko, M. V. Kurlenya, V. N. Oparin, et al., «Phenomenon of zonal disintegration of rocks around underground openings,» Dokl. Akad. Nauk SSSR, 289, No. 5 (1986).
2. E. I. Shemyakin, M. V. Kurlenya, V. N. Oparin, V. N. Reva, F. P. Glushikhin, and M. D. Rozenbaum, «USSR Discovery No. 40. Phenomenon of zonal disintegration of rocks around underground openings,» Byull. Izobret., No. 1 (1992).
3. M. V. Kurlenya and V. N. Oparin, «Problems of nonlinear geomechanics. Part I,» Journal of Mining Science, No. 3 (1999).
4. V. N. Oparin, A. P. Tapsiev, M. A. Rozenbaum, et al., Zonal Disintegration of Rocks and Underground Excavation Stability [in Russian], SO RAN, Novosibirsk (2008).
5. V. N. Oparin, A. S. Tanaino, and V. F. Yushkin, «Discrete properties of entities of a geomedium and their canonical representation,» Journal of Mining Science, No. 3 (2007).
6. M. A. Guzev and V. V. Makarov, Deformation and Failure of Greatly Compressed Rocks around Excavations [in Russian], Dalnauka, Vladivostok (2007).
7. A. I. Chanyshev, «On studying the zonal rock disintegration,» in: Stress-Strain State of a Rock Mass [in Russian], IGD, Novosibirsk (1988).
8. M. P. Zborshchik, L. S. Metlov, and A. F. Morozov, «Mechanism of zonal fracture of rocks around production excavations,» in: The 8th Russian Theoretical and Applied Mechanics Conference Proceedings. Abstracts [in Russian], UrO RAN, Ekaterinburg (2001).
9. N. S. Bulychev, Underground Mechanics [in Russian], Nedra, Moscow (1989).
10. N. V. Mel’nikov (Ed.), Reference Book on Physical Properties of Rocks [in Russian], Nedra, Moscow (1975).
11. V. E. Mirenkov, «Contact problems in rock mechanics,» Journal of Mining Science, No. 4 (2007). 12. N. I. Muskhelishvili, Some Basic Problems in Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).
13. V. M. Seryakov, «Implementation of the calculation method for stress state of rock mass with backfill,» Journal of Mining Science, No. 5 (2008).
14. V. M. Seryakov, «On one approach to calculation of the stress-strain state of a rock mass in the vicinity of a goaf,» Journal of Mining Science, No. 2 (1997).

Qi Chengzhi, Qian Qihu, and Wang Mingyang

The temporal zonal disintegration process is studied on the basis of irreversible thermal dynamics, the theory of continuous phase transition, and elastoplasticity theories. A spatial and temporal analytical solution to the problem of zonal disintegration near deep-level tunnels is given, and some laws of the zonal disintegration evolution are demonstrated.

Deep-level rock mass, deformation and fracture, temporal process

1. G. R. Adams and A. J. Jager, «Retroscopic observations of rock fracturing ahead of stope faces in deep-level gold mines,» J. of the South Africa Institute of Mining and Metallurgy, 80 (1980).
2. E. I. Shemyakin, G. N. Fisenko, M. V. Kurlenya, V. N. Oparin, et al., «The rock-mass zone disintegration near deep level mining opening. Part I: Data of in-situ observations,» Journal of Soviet Mining Science, No. 4 (1986).
3. E. I. Shemyakin, G. N. Fisenko, M. V. Kurlenya, V. N. Oparin, et al., «The rock-mass zone disintegration near deep level mining opening. Part II: The fracture of rock in models from equivalent materials,» Journal of Soviet Mining Science, No. 4 (1986).
4. E. I. Shemyakin, G. N. Fisenko, M. V. Kurlenya, V. N. Oparin, et al., «The rock-mass zone disintegration near deep level mining opening. Part III: Theoretical representation,» Journal of Soviet Mining Science, No. 1 (1987).
5. E. I. Shemyakin, V. N. Oparin, M. V. Kurlenya, et al., «The rock-mass zone disintegration near deep level mining opening. Part IV: Practical applications,» Journal of Soviet Mining Science, No. 4 (1989).
6. M. V. Kurlenya, V. N. Oparin, G. F. Bobrov, et al., «On the splitting effect in zones of supporting pressure,» Journal of Mining Science, No. 5 (1995).
7. V. N. Odintsev, «On the mechanism of rock-mass zone disintegration near deep level mining opening,» Journal of Mining Science, No. 4 (1994).
8. V. N. Odintsev, Breaking off Fracture of Rock Mass [in Russian], IPKON RAS Press, Moscow (1996).
9. M. A. Gusev and A. A. Paroshin, «Non-Euclidian model of rock-mass zone disintegration near underground mining opening,» Applied Mechanics and Technical Physics, 42 (2001).
10. N. S. Adigamov and Ya. I. Rudaev, «Equation of state with the consideration of softening of material,» Journal of Mining Science, No. 4 (1999).
11. L. D. Landau, «On the theory of phase transition,» J. of Experimental and Theoretical Physics, No. 7 (1937).
12. A. A. Abrikosov, Introduction to the Theory of Metals [in Russian], Science Press, Moscow (1987).
13. V. L. Ginzburg and L. D. Landau, «On the theory of superconductivity,» J. of Experimental and Theoretical Physics, 20 (1950).
14. M. P. Zborschik and V. V. Nazimko, Protection of Openings in Deep-Level Mines in Zones of Unloading [in Russian], Kiev, Tekhnik (1991).
15. H. Haken, Synergetics. An Introduction. Berlin, Springer-Verlag (1977).

S. A. Konstantinova

The paper offers a criterion to estimate geodynamic hazard of underground or surface stratified mineral mining based on the variation of energy stored due to mining.

Viscoelastoplastic medium, faulted zone, seam parting, pillar, finite-element method

1. A. A. Malovichko, T. S. Blinova, A. Yu. Lebedev, et al., «Solikamsk earthquake of January 5, 1995,» in: International Symposium Proceedings on Safety Aspects of Mineral Mining in City and Industry Agglomeration Areas [in Russian], UrO RAN, Ekaterinburg (1997).
2. O. A. Kusonski, «Characteristics of some of seismic events at the Urals in 1988 — 1997,» in: Aspects of Geodynamics, Seismicity and Mineralogy of Lithosphere Mobile Belts and Platforms [in Russian], UrO RAN, Ekaterinburg (1998).
3. S. A. Konstantinova, «Retrospective analysis of the causes of a tectonic rockburst at Solikamsk Mine-2,» in: Mining-Induced Seismicity: Models of Seismic Origins, Forecasting and Prevention. Collection of Scientific Papers [in Russian], KNTS RAN, Apatity (2004).
4. S. A. Konstantinova, «Tectonic rockburst at Solikamsk Mine-2,» Bezop. Truda Prom., No. 12 (2004).
5. A. A. Kozyrev, «Resume and objectives of rockburst management in Kola Peninsula mines,» in: Geodynamic Safety of Surface and Underground Mining [in Russian], KNTS RAN, Apatity (2003).
6. D. A. Malovichko, «Man-made character of Solikamsk earthquake,» in: Strategy and Processes of Georesource Development. Proceedings of Scientific Meeting for the 2003 R&D Outcomes at Mining Institute of the Ural Branch of the Russian Academy of Sciences [in Russian], Gorn. Inst., Perm (2004).
7. A. A. Malovichko, et al., «Production-induced seismicity monitoring at the Upper Kama Potash Deposit mines,» in: Proceedings of the 10th Inter-Branch Coordination Meeting on Geodynamic Safety [in Russian], UGGGA, Ekaterinburg (1997).
8. S. A. Konstantinova, «Tectonic rockburst at Solikamsk Mine-2,» Gorn. Zh., No. 3 (2005).
9. V. V. Filatov, G. G. Kassin, and B. A. Popov, «Geophysical research at the Upper Kama Potash Deposit,» Izv. Vuzov, Gorny Zh., No. 6 (1995).
10. G. G. Kassin and V. V. Filatov, «Forecasting geodynamic events at the Upper Kama Potash Deposit,» Izv. Vuzov, Gorny Zh., No. 3 (2002).
11. S. A. Konstantinova and O. V. Zal’tszeiler, «Test results for samples of oversalt rocks in faulted zone in Solikamsk Mine-1,» Izv. Vuzov, Gorny Zh., No. 6 (2005).
12. I. M. Batugina and I. M. Petukhov, Geodynamic Zoning of Mineral Deposits in Mine Planning and Operation [in Russian], Nedra, Moscow (1988).
13. S. A. Konstantinova, S. A. Chernopazov, and N. S. Azanova, «Disperse analysis of physico-mechanical characteristics of salt rocks in terms of an earth bore inhering to a faulted zone,» Izv. Vuzov, Gorny Zh., No. 2 (2007).
14. A. A. Yarosh, «Faults in crystalline basement on the east of Russkaya platform of the West Urals,» Sov. Geolog., No. 10 (1966).
15. A. V. Zubkov, Geomechanics and Geotechnology [in Russian], UrO RAN, Ekaterinburg (2001).
16. S. A. Konstantinova, S. A. Chernopazov, M. V. Gilev, and Yu. V. Mynka, «Geomechanical analysis of the tectonic rockburst at Solikamsk Mine-2,» in: International Scientific Conference Proceedings on Geodynamics and Stress Sate of the Earth’s Interior [in Russian], IGD SO RAN, Novosibirsk (2004).
17. M. V. Gilev, S. A. Konstantinova, and S. A. Chernopazov, «Some technical approaches to estimating the surface and underground geodynamic safety for Upper Kama Potash Deposit exploitation,» Marksheider. Nedropolz., No. 3 (2006).
18. S. A. Konstantinova, «On a phenomenological model of salt rock deformation and failure under long-term compression,» Journal of Mining Science, No. 3 (1983).
19. S. A. Konstantinova and S. A. Chernopazov, «Development of hereditary model for deformation and failure of salt rocks,» Journal of Mining Science, No. 1 (2004).
20. A. A. Kozyrev, S. N. Savchenko, and V. A. Mal’tsev, «Causes of technogenic earthquake during open mining at the Khibiny apatite deposits,» Journal of Mining Science, No. 3 (2005).
21. E. I. Shemyakin, M. V. Kurlenya, and G. I. Kulakov, «On classification of rockbursts,» Journal of Mining Science, No. 5 (1986).
22. S. S. Grigoryan, «On earthquake process mechanism and subject-matter of the empirical regularities in the seismology,» Dokl. AN SSSR, 229, No. 5 (1988).
23. K. Kasahara, Earthquake Mechanics, Cambridge University Press, Cambridge (1981).
24. A. A. Kozyrev, V. I. Panin, and V. A. Mal’tsev, «Synergetic concept of the prediction and prevention of heavy dynamic events in mines,» in: International Scientific Conference Proceedings on Modern Conceptual Views in Rock Mechanics [in Russian], Ilim, Bishkek (2002).
25. A. N. Shabarov, «On formation of geodynamic zones prone to rock bursts and tectonic shocks,» Journal of Mining Science, No. 2 (2001).

M. Reuter, V. Kurfürst, K. Mayrhofer, and J. Veksler

The paper presents measurement data on pressures in legs of a powered support in a longwall. The authors show that the rock pressure distribution along the longwall face is undulating and, based on the geomechanical calculation, find the relationship between the energy density of the rock mass and support. Based on the case study of a longwall before a rockburst, it is shown that the seam energy density decrease can initiate the rockburst.

Pressure, shield section, energy density, undulant distribution, rock burst

1. O. Jacobi, «Die Konvergenzwelle, eine Erscheinung beim schreitenden Strebausbau,» Glückauf, 99, Heft 12 (1963).
2. Ji Chen and S. Syd. Peng, «Analysis of longwall face roof activity using shield leg pressure,» Longwall USA, International Exhibition and Conference, Pittsburg (2003).
3. H. Irresberger, Schreitausbau für den Steinkohlenbergbau, Ver lag Glückauf (1994).
4. A. V. Dokukin, Development of Powered Supports [in Russian], Nedra, Moscow (1984).
5. M. Reuter and Yu. Weksler, «Longwall automation: improved productivity and hazardous rock pressure control,» Sibirski Ugol’, 7, No. 4 (2008).
6. V. I. Klishin, Adaptation of Powered Supports to the Dynamic Loading Conditions [in Russian], Nauka, Novosibirsk (2002).
7. I. M. Petukhov and A. M. Lin’kov, Rockburst and Outburst Mechanics [in Russian], Nedra, Moscow (1983).
8. R. L. Salganik, «On active characteristics of materials containing very many fractures,» in: Preprint of the Institute of Problems of Mechanics, USSR Academy of Sciences [in Russian], Moscow (1974).
9. L. M. Kachanov, Basics of the Failure Mechanics [in Russian], Nauka, Moscow (1974).

V. D. Baryshnikov and L. N. Gakhova

The paper analyzes geomechanical conditions of slicing method application to extract a vertical ore body in terms of Internatsionalnaya kimberlite pipe. The authors assess stability of stopes at principal stages of horizon mining.

Stress-strain state, mathematical modeling, mining system, strength, stability

1. L. I. Sedov, Continuum Mechanics [in Russian], Nauka, Moscow (1984).
2. W. Wittke, Rock Mechanics, Springer-Verlag, Berlin, New York (1990).
3. R. Goodman, Introduction to Rock Mechanics, Wiley, John & Sons (1989).
4. A. M. Lin’kov, Boundary Integral Equations in Elasticity Theory [in Russian], Nauka, Saint Petersburg (1999).
5. A. M. Freidin, S. A. Neverov, A. A. Neverov, and P. A. Philippov, «Mine stability with application of sublevel caving schemes,» Journal of Mining Science, No. 1 (2008).
6. M. V. Kurlenya, Geomechanics and Technosphere [in Russian], Nauka, Novosibirsk (2004).
7. M. V. Kurlenya, V. M. Seryakov, and A. A. Eremenko, Production Induced Geomechancal Stress Fields [in Russian], Nauka, Novosibirsk (2005).
8. D. M. Kazikaev, Underground Mining Geomechanics [in Russian], MGGU, Moscow (2005).
9. L. A. Nazarova, A. M. Fredin and A. A. Neverov, «Chamber mining with roof caving at the Nikolaevsk Mine,» Journal of Mining Science, No. 4 (2005).
10. L. N. Gakhova, Stress Analysis Program Based on the Boundary Integral Approach for a Block Rock Mass (ELB2D). RosAPO, Registration Certificate No. № 960814 [in Russian] (2004).
11. Production Procedure for Backfill Operations in Internatsionalny Mine in 2004 — 2006 [in Russian], Yakutniproalmaz, Mirny (2004).
12. V. D. Baryshnikov, L. N. Gakhova, and N. P. Kramskov, «Stress state of ore mass in the ascending slice mining system,» Journal of Mining Science, No. 6 (2002).
13. N. S. Bulychev, Mechanics of Underground Structures [in Russian], Nedra, Moscow (1989).


A. G. Bagdasar’yan, A. S. Fedyanin, and P. A. Shemetov

The authors estimate parameters of a disruption structure in host rocks in the course of mining in terms of Muruntau open pit.

Rocks, disruption structure, heterogenous medium

1. A. G. Bagdasar’yan, B. G. Lukishov, V. N. Rodionov, and A. S. Fedyanin, «Detection of features of a rupture structure in walls of an open pit in terms of the Muruntau open pit,» Journal of Mining Science, No. 1 (2008).
2. V. N. Rodionov, «Dissipative structures in geomechanics,» Uspekhi Mekhan., No. 2, Issue 4 (1979).
3. V. N. Rodionov, I. A. Sizov, and V. M. Tsvetkov, Basics of Geomechanics [in Russian], Nauka, Moscow (1986).
4. V. N. Rodionov and I. A. Sizov, «Model of a solid with the dissipative structure for geomechanics,» Journal of Mining Science, No. 6 (1988).


Roussos Dimitrakopoulos and Nikki Grieco

This paper adopts risk-based concepts developed in open pit mining to the underground stoping environment and shows examples using data from Kidd Creek Mine, Ontario, Canada. Risk is quantified in terms of the uncertainty a conventional stope design has in expected: contained ore tones, grade and economic potential. In addition, a new probabilistic mathematical formulation optimizing the size, location and number of stopes in the presence of grade uncertainty is outlined and applied, to demonstrate the advantages of a user-defined level of acceptable risk.

Stope design, risk analysis, optimization, stochastic simulation, economic evaluation

1. J.-M. Rendu, «Geostatistical simulations for risk assessment and decision making: the mining industry perspective», Int. J. Surface Mining, Reclamation and Environment, 16 (2002).
2. M. Vallee, «Resource/reserve inventories: What are the objectives?» CIM Bulletin, 92 (1999).
3. C. K. Baker and S. M. Giacomo, «Resource and reserves: their uses and abuses by the equity markets,» in: Ore Reserves and Finance, A Joint Seminar between Australasian Institute of Mining and Metallurgy and ASX, The Australasian Institute of Mining and Metallurgy, Sydney (1998).
4. P. J. Ravenscroft, «Risk analysis for mine scheduling by conditional simulation,» Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 101 (1992).
5. P. A. Dowd, «Risk in minerals projects: analysis, perception and management,» Transactions of the Institution of Mining and Metallurgy, Section A: Mining Technology, 106 (1997).
6. R. Dimitrakopoulos, C. T. Farrelly, and M. Godoy, «Moving forward from traditional optimization: Grade uncertainty and risk effects in open-pit design,» Transactions of the Institution of Mining and Metallurgy Section A: Mining Technology, 111 (2002).
7. R. Dimitrakopoulos, L. Martinez, and S. Ramazan, «A maximum upside / minimum downside approach to the traditional optimization of open pit design,» Journal of Mining Science, 43 (2007).
8. R. Dimitrakopoulos and S. Ramazan, «Uncertainty based production scheduling in open pit mining,» SME Transactions, 316 (2004).
9. S. Ramazan and R. Dimitrakopoulos, «Traditional and new MIP models for production scheduling with in-situ grade variability,» Int. J. Surface Mining, Reclamation and Environment, 14 (2004).
10. M. C. Godoy and R. Dimitrakopoulos, «Managing risk and waste mining in long-term production scheduling,» SME Transactions, 316 (2004).
11. J. Ovanic, «Economic optimization of stope geometry,» PhD Thesis, Michigan Technological University, USA (1998).
12. M. Ataee-pour and E. Y. Baafi, «Stope optimization using the maximum value neighborhood (MVN) concept,» in: Twenty-Eighth International Symposium on the Application of Computers and Operations Research in the Mineral Industry, Colorado School of Mines, Golden (1999).
13. G. Thomas and A. Earl, «The application of second-generation stope optimization tools in underground cut-off grade analysis,» in: Strategic Mine Planning, Whittle Programming Pty Ltd., Perth (1999).
14. C. Standing, P. Myers, P. Collier, and M. Noppe, «Orebody modeling and strategic mine planning uncertainty and risk management,» in: Proceedings of Orebody Modeling and Strategic Mine Planning Symposium, The Australasian Institute of Mining and Metallurgy, Melbourne (2004).
15. N. J. Grieco, «Risk analysis of optimal stope design: incorporating grade uncertainty,» PhD Thesis, University of Queensland, Brisbane (2004).
16. N. J. Grieco, «Managing grade risk in stope design optimisation: probabilistic mathematical programming model and application in sublevel stoping,» IMM Transactions, 116 (2007).
17. W. F. Bawden, «Risk assessment in strategic and tactical geomechanical underground mine design,» in: Proceedings of Orebody Modeling and Strategic Mine Planning Symposium, The Australasian Institute of Mining and Metallurgy, Melbourne (2004).
18. P. Roos, Underground Tour Guidebook, Kidd Creek Mine, Ontario (2001).
19. R. Dimitrakopoulos and X. Luo, «Generalized sequential Gaussian simulation on group size v and screen-effect approximations for large field simulations,» Mathematical Geology, 36 (2004).
20. A. Soares, «Direct sequential simulation and co-simulation,» Mathematical Geology, 33 (2001).
21. DATAMINETM, «Floating stope optimizer user guide edition 1.2,» Mineral Industries Computing Limited (1995).
22. P. Goovaerts, Geostatistics for Natural Resources Evaluation, Oxford University Press, New York (1997).
23. M. H. Kay,"Geostatistical integration of conventional and downhole geophysical data in the metalliferous mine environment," MSc Thesis, University of Queensland, Brisbane (2001).
24. R. Dimitrakopoulos, «Applied risk assessment in orebody modeling and mine planning: decision-making with uncertainty,» in: Professional Development Short Course Notes, Australasian Institute of Mining and Metallurgy, Melbourne (2007).


V. A. Chanturia, T. A. Ivanova, and E. V. Koporulina

For the noble metal flotation reagents, the authors propose a new test method of selective adsorption on surface of minerals covered with noble metal grains, by using a scanning electron microscope equipped with an X-ray energy-dispersive microanalyzer. Sorption of DTPINa was recorded by SEM and thin layer chromatography on surface of platinum metal grains in the form of a compound identical to the synthesized compound Pt[(iso-C4H9)2PS2]2. It has been found that interaction of DTPI and platinum ions can run in unheated aqueous solutions at a rate sufficient for flotation. In pH 4 — 9 range, the rate of platinum DTPI formation is maximal.

Flotation, sorption, electron microscopy, synthesis, noble metals, platinum, sulphide minerals, complexing, compounds, flotoreagent, dialkyl dithiophosphinate, hexa chloroplatinate, oxidation

1. I. P. Maksimov, «Efficient reagents in developing flotation techniques for `Saf’yanovski copper-zinc ores,» Obog. Rud, No. 5 (2005).
2. Milorad Grujic, Dušan Salatić, Ivan Djurkoyić, and M. M. Grujić, «Flotability of copper, gold and platinum minerals in function of liberation of rate and applied collectors,» in: The 36th Mining and Metallurgy Conference Proceedings, Serbia and Montenegro (2004).
3. R. S. Farinato and L. R. Nagaraj, «Time dependent wettability of mineral and metal surfaces in the presence of thiol surfactants,» Journal of Adhesion Science and Technology, 6, No. 12 (1992).
4. V. A. Chanturia, T. V. Nedosekina, and V. V. Stepanova, «Experimental-analytical methods of investigating the effect of complexing reagents on platinum flotation,» Journal of Mining Science, 44, No. 3 (2008).
5. T. E. Kokina, «Coordination compounds of manganese (II), cobalt (II), nickel (II) and copper (II) with DTPI-ions and nitrogen heterocycles,» Synopsis of Diss. Cand.Chem.Sci. [in Russian], Novosibirsk (2005).
6. L. K. Kabanova, P. M. Solozhenkin, and S. V. Usova, «Diaryl- and diakyl-dithiophosphinic acids as analytical reagents,» Izv. AN TSSR [in Russian], 53, No. 3 (1974).
7. M. I. Ivanyutin, «Diethyl sodium dithiophosphinate as analytical reagent,» in: Organic Reagents in Analytical Chemistry. Metal Corrosion. Text Edition [in Russian], USSR Smolensk Pedagogical Institute, Smolensk (1973).
8. P. M. Solozhenkin, «Interaction of minerals and their paramagnetic center with flotation reagents under the ore flotation,» Synopsis of Diss. Cand.Tech.Sci. [in Russian], Moscow (1989).
9. Synthesis of Platinum Metal Compounds. Handbook [in Russian], Nauka, Moscow (1964).
10. F. Bimish, Analytical Chemistry of Noble Metals. Part II [Russian translation], Mir, Moscow (1969).
11. Yu. A. Zolotov, G. M. Varshal, and V. M. Ivanov (Eds.), Analytical Chemistry of Platinum Metals. Collected Works [in Russian], Editorial, URSS, Moscow (2003).
12. G. V. Myasoedova and G. I. Malofeeva, «Sorption methods for concentration of noble metals,» Zh. Analit. Khim., 34, No. 8 (1979).
13. T. A. Ivanova and E. V. Koporulina, «Formation conditions for flotoreagent and noble metal compounds on sulphide surface,» Gorn. Inform.-Analit. Byull., No. 4 (2008).
14. T. V. Nedosekina, T. A. Ivanova, and V. V. Stepanova, «Interaction of complexing reagents with platinum under flotation,» Gorn. Inform.-Analit. Byull., No. 8 (2006).
15. V. L. Tauson, O. I. Ovchinnikova, O. I. Bessarabova, et al., «Distribution of gold reductive adsorption-precipitated from HAuCl4 solution on crystals of magnetite, sphalerite and galena,» Geolog. Geofiz., 41, No. 10 (2000).
16. S. I. Ginzburg, K. A. Gladyshevskaya, N. A. Ezerskaya, et al., Platinum Metal and Gold Chemical Analysis Manual [in Russian], Nauka, Moscow (1965).

S. A. Kondrat’ev

The mechanism of the physically sorbed collector in froth flotation is under discussion in the paper. It is shown that the basic characteristics of the collecting capacity of a physically sorbed flotation agent are its solubility, surface pressure in the film of the agent at «gas — liquid» interface, and viscosity. Experimental data and practical evidence described in the paper fortify the proposed mechanism of the collecting agent under consideration.

Flotation, mineral particle, gas bubble, water interlayer, surface pressure, carboxylic acids

1. I. A. Kakovskii, «On mechanism of interaction between collectors with minerals,» Izv. Vuzov, Tsvet. Metall., No.3 (1985).
2. S. A. Kondrat’ev «Physically sorbed collectors in froth flotation and their activity. Part I,» Journal of Mining Science, No. 6 (2008).
3. S. I. Mitrofanov, Selective Flotation [in Russian], Nedra, Moscow (1967).
4. D. G. Suciu, O. Smigelschi, and E. Ruckenstein, "The spreading of liquids on liquids, Journal of Colloid and Interface Science, 33, No. 4 (1970).
5. T. Smith, «Monolayers on water. I. Theoretical equation for the liquid expanded state,» Journal of Colloid and Interface Science, 23 (1967).
6. J. Marsden and E. K. Rideal, «On monolayers of isomeric unsaturated compounds,» Journal of Chemical Society, No. 8 (1938).
7. N. A. Aleinikov, G. I. Nikishin, Yu. N. Ogibin, and A. D. Petrov, «Flotation properties of branched carboxylic acids,» Zh. Prikl. Khim., 35, No. 9 (1962).
8. V. I. Ryaboi, N. A. Yanis, L. N. Petrova, I. D. Ustinov, and L. A. Artamonova, Effect of Specific Structure and Composition of Fat-Acid Reagents on Their Interaction with Minerals [in Russian], Nauka, Moscow (1981).
9. A. N. Grebnev and Stefanovskaya, «Interrelation between chemical structure, physicochemical and flotation properties of alkylsulfates,» in: Modern State and Targets of Selective Ore Flotation [in Russian], Nauka, Moscow (1967).
10. V. I. Ryaboi, «Cation reagents,» in: Physicochemical Fundamentals of Flotation Theory [in Russian], B. N. Laskorina and L. D. Plaksina (Eds.), Nauka, Moscow (1983).
11. A. A. Abramov, S. B. Leonov, and M. M. Sorokin, Chemistry of Flotation Systems [in Russian], Nedra, Moscow (1982).
12. E. Wark and I. Wark, «Influence of micelle formation on flotation,» Nature, 143 (1939).
13. V. I. Klassen and S. A. Tikhonov, «Effect of sodium oleate on flotation properties of air-bubble surface,» Tsvet. Metall, No. 10 (1960).
14. I. A. Kakovskii, E. I. Silina, and A. N. Grebnev, «The scope of application of flotation collectors of high activity,» Izv. Vuzov, Tsvet. Met., Nos. 3 and 4 (1962).
15. Yu. B. Rubinshtein. V. I. Melik-Gaikazyan, N. V. Matveenko, and S. B. Leonov, Froth Separation and Column Flotation [in Russian], Nedra, Moscow (1989).

T. S. Yusupov and L. G. Shumskaya

The paper describes a new approach to alumina and aluminum production from a nonconventional aluminosilicate feed, namely, zeolite tuffs. The authors substantiate mineralogical features and technological principles of treatment of zeolites and clayey minerals that are in composition of zeolite ores. The illustrated use perspectiveness for the zeolite processing and mechanical activation will greatly enhance the processes of opening and decomposition of base minerals.

Zeolite, zeolite tuff, acid opening, mechanical activation

1. E. A. Kozlovski, Mineral Resource Policy and National Security in Russia [in Russian], MGU, Moscow (2002).
2. V. M. Sizyakov, «Aluminum industry in Russia: challenges and future considerations,» in: Mining Institute Proceedings [in Russian], 144, Saint Petersburg (1999).
3. G. G. Lepezin, «Russian aluminum: is there any future?» ECO (Russian Economic Journal), No. 5 (2003). 4. Natural Zeolites in Russia [in Russian], SO RAN, Novosibirsk (1992).
5. A. Kh. Sibgatullin, A. I. Burov, A. N. Tyurin, et al., «Zeolite-bearing rocks occurring in European Russia and their use perspectiveness,» in: Natural Zeolites in Russia. Part I: Geology, Physicochemical Properties and Application in Industry and Environmental Protection [in Russian], SO RAN, Novosibirsk (1992).
6. G. I. Ovcharenko, V. L. Sviridov, and L. K. Kazantseva, Zeolites in Construction Materials [in Russian], AltGTU, Barnaul (2000).
7. T. S. Yusupov, L. G. Shumskaya, and E. A. Kirillova, «State and perspectives of natural zeolite beneficiation,» Journal of Mining Science, No. 3 (2000).
8. T. S. Yusupov, A. V. Shkarin, L. G. Shumskaya, and L. P. Pantyukova, «Beneficiation and physico-chemical properties of chabasite as one of the perspective types of Transbaikalia zeolites,» Journal of Mining Science, No. 2 (2001).
9. Yu. A. Lainer, Integrated Acid Treatment of Aluminum-Bearing Materials [in Russian], Nauka, Moscow (1982).
10. A. I. Lainer, Alumina Production [in Russian], Gos. Nauch.-Tekh. Izd. Chern. Tsvet. Met., Moscow (1961).
11. L. G. Shumskaya and T. S. Yusupov, «Chemical processing of low-grade bauxites on the basis of activation grinding. Part I: Development of deironing method for bauxites of the Bokson deposit,» Journal of Mining Science, No. 5 (2003).
12. L. G. Shumskaya, T. S. Yusupov, and L. P. Pantyukova, «Comparative analysis of changes in aluminum hydrate structure and chemistry due to mechanical activation,» in: International Conference Proceedings on Ecological Problems and New Integrated Mineral Treatment Technologies [in Russian], ChitGTU, Moscow Chita (2002).
13. L. G. Shumskaya and T. S. Yusupov, «Mechanochemical modification of zeolites by ammonium phosphates,» Khim. Int. Ust. Razv., No. 6 (1998).
14. E. S. Lapteva, T. S. Yusupov, and A. S. Berger, Physicochemical Change in Laminated Silicates under Mechanical Activation [in Russian], Nauka, Novosibirsk (1981).

Yu. A. Mamaev, N. G. Yatlukova, T. N. Aleksandrova, and N. M. Litvinova

The paper generalizes research findings on application of chemical additives to stage-by-stage processing of rebellious gold-bearing ores. The designed stages of gold extraction intensification are the controlled mineral alteration by preparation, use of conventional and specific collecting agents to prepare mineral surface to sorption to intensify flotation, creation of selective collecting agents, and cyanation optimization by introducing additional oxidation agents.

Ore, analysis, ore preparation, flotation, cyanation, production waste

1. Yu. G. Safonov, Mineral Base Potential in Terms of Gold Extraction in Russia in the 21st Century [in Russian], www.scgis.ru.
2. T. N. Mel’nikova (Aleksandrova), N. G. Yatlukova, and N. M. Litvinova, «On ore grinding optimization,» Obog. Rud, No. 4 (2006).
3. N. M. Litvinova, N. G. Yatlukova, T. N. Mel’nikova, and E. I. Danilov, «Intensification of grinding of the rebellious gold-bearing ore extracted from Albazinsky deposit,» Gorny Zh., No. 10 (2006).
4. V. S. Litvintsev, T. N. Mel’nikova, N. M. Litvinova, and N. G. Yatlukova, «Mechanical activation in ore preparation,» Gorny Zh., No. 6 (2006).
5. Yu. A. Mamaev, T. N. Aleksandrova, N. G. Yatlukova, and N. M. Litvinova, «On studying rebellious ores with chalcogenide mineral compounds,» Gorn. Inform.-Analit. Byull., No. 4 (2007).


A. V. Dimaki and S. G. Psakh’e

The spaced monitoring system developed for relative displacements in a block-faulted geomedium enables the central time-lapse survey of movement of lengthy and spaced discontinuities in a wide range of temperatures and weather environment. The communication between the monitoring system units is wireless.

Block medium, discontinuity, displacement monitoring, SDVIG-4MR complex

1. A. A. Spivak, «Relaxation monitoring and diagnostics of rock massifs,» Journal of Mining Science, No. 5 (1994).
2. M. V. Kurlenya, V. V. Adushkin, V. V. Garnov, V. N. Oparin, A. F. Revuzhenko, and A. A. Spivak, «Alternating dynamic response of rocks,» Dok. Akad. Nauk, 323, No. 2 (1992).
3. G. G. Kocharyan, A. A. Kulyukin, and D. V. Pavlov, «Dynamical features of interblock deformation in the Earth’s crust,» Geolog. Geofiz., 47, No. 5 (2006).
4. V. V. Ruzhich, S. G. Psakh’e, E. N. Chernykh, O. V. Federyaev, A. V. Dimaki, and D. S. Tirskikh, «Vibration-pulse influence on intensity of displacements in a rock mass,» Fiz. Mezomekh., 10, No. 1 (2007).
5. A. V. Dimaki, S. V. Astafurov, E. V. Shil’ko, V. V. Ruzhich, and S. G. Psakh’e, «SDVIG-3M hardware-software complex for displacement recording in faulted zones,» in: International Geodynamics and Stress State of the Earth’s Interior Conference Proceedings [in Russian], IGD SO RAN, Novosibirsk (2006).
6. www.atmel.com
7. www.rateos.ru
8. www.kingston.com
9. www.ftdichip.com
10. www.analog.com
11. www.honeywell.com
12. www.micro-epsilon.com
13. www.tongda.com
14. S. V. Astafurov, E. V. Shil’ko, V. V. Ruzhich, and S. G. Psakh’e, «Influence of a local stress state on the dynamic response of geological block discontinuities,» Geolog. Geofiz., 49, No. 1 (2008).
15. S. G. Psakh’e, E. V. Shil’ko, S. V. Astafurov, A. V. Dimaki, V. V. Ruzhich, and A. Yu. Panchenko, «Simulation study into origination and development of subduction deformation structures in sheet ice of the Baikal Lake,» Fiz. Mezomekh., 11, No. 1 (2008).

Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2019. Информация о сайте