Rambler's Top100
Институт горного дела СО РАН
 Знак «Шахтерская слава» Лаборатория механики деформируемого твердого тела и сыпучих сред Кольцевые пневмоударные машины для забивания в грунт стержней Лаборатория механизации горных работ
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2009 год » JMS, Vol. 45, No. 3, 2009

JMS, Vol. 45, No. 3, 2009


GEOMECHANICS


ENERGY FLUX LINES IN. A. DEFORMABLE ROCK MASS WITH ELLIPTICAL OPENINGS
А. F. Revuzhenko and S. V. Klishin

The stress-strain state of an elastic plane with elliptical cuts is studied under different loading conditions. The lines of an energy flux are constructed. It is shown that energy transmission into a deformable medium is induced exclusively by external forces applied. The effect of boundary conditions on the energy flux lines is demonstrated.

Stress, displacement, elasticity, energy, energy flux, mechanical energy transmission

REFERENCES
1. N. A. Umov, Selected Works [in Russian], Gostekhizdat, Moscow (1950).
2. P. L. Kapitsa, «Energy and physics,» Usp. Fiz. Nauk, No. 1 (1976).
3. A. Love, A Treatise on the Mathematical Theory of Elasticity, 2nd Edition, Cambridge University Press (1906).
4. F. German and J. Schmid, «Solution of static problems by means of impulse fluxes,» in: Physics Abroad [in Russian], Series B, Mir, Moscow (1986).
5. V. I. Kramarenko and A. F. Revuzhenko, «Energy fluxes in a medium under deformation,» Journal of Mining Science, No. 6 (1988).
6. A. F. Revuzhenko, Mechanics of Elastic-Plastic Media and Nonstandard Analysis [in Russian], NGU, Novosibirsk (2000).
7. M. Reuter, V. Kurfürst, K. Mayrhofer, and J. Veksler, «Undulant rock pressure distribution along a longwall face,» Journal of Mining Science, No. 2 (2009).
8. N. I. Muskhelishvili, Some Basic Problems of the Mathematical Theory of Elasticity [in Russian], Nauka, Moscow (1966).
9. G. P. Cherepanov, Brittle Failure Mechanics [in Russian], Nauka, Moscow (1974).
10. S. L. Crouch and A. M. Strafield, Boundary Element Method in Solid Mechanics, George Allen and Unwin, London (1983).
11. P. K. Banerjee and R. Butterfield, Boundary Element Method in Engineering Science, McGraw-Hill, London (1981).


ELASTIC PROPERITES OF BLOCKS IN THE LOW-FREQUENCY COMPONENT OF WAVES IN A 2D MEDIUM
V. A. Saraikin

Based on the analysis of a 2D model composed of rectangular blocks with deformable interlayers, it is found that the earlier model of perfectly rigid blocks is only applicable if interlayers are low rigid and blocks are rigid. Otherwise, the descriptions of dynamic disturbances in such media deviate greatly. The present paper introduces a correction for this restriction, as well as analyzes the elastic properties of blocks and their contribution to the oscillation motion.

Block medium, contact conditions, non-stationary waves, rigidity of a representative element

REFERENCES
1. M. A. Sadovsky, «Natural rock lumpiness,» DAN SSSR, 247, No. 4 (1979).
2. L. I. Slepyan and Sh. A. Kulakhmetova, «Expansion of a fracture in a rock mass consisting of rigid blocks with elastic interlayers,» Fiz. Zemli, No. 12 (1986).
3. I. L. Slepyan, Models and Phenomena in Fracture Mechanics, Springer-Verlag Berlin Heidelberg (2002).
4. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Formation of elastic wave packages under impulse excitation of block media. Pendulum-type waves Vμ,» DAN SSSR, 333, No. 4 (1993).
5. V. A. Saraikin, M. V. Stepanenko, and O. V. Tsareva, «Elastic waves in a medium of a block structure,» Journal of Mining Science, No. 1 (1988).
6. L. Brillouin, Wave Propagation in Periodic Structures, NY, Dover Publication (1953).
7. I. V. Meshchersky, Problems of Theoretical Mechanics. Study Manual [in Russian], V. A. Palmov and D. R. Merkin (Eds.) Lan, Saint Petersburg (2001).
8. E. N. Sher, N. I. Aleksandrova, M. V. Aizenberg-Stepanenko, and A. G. Chernikov, «Influence of the block hierarchic structure on the peculiarities of seismic wave propagation,» Journal of Mining Science, No. 6 (2007).
9. N. I. Aleksandrova and E. N. Sher, «Modeling of wave propagation in block media,» Journal of Mining Science, No. 6 (2004).
10. V. Novatsky, Dynamics of the Constructions [in Russian], Gosstroiizdat, Moscow (1963).
11. A. Nadai, Plasticity and Failure of Solids [in Russian], 2, Mir, Moscow (1969).
12. V. A. Saraikin, «Calculation of wave propagations in the two-dimensional assembly of rectangular blocks,» Journal of Mining Science, No. 4 (2008).
13. N. I. Aleksandrova, E. N. Sher, and A. G. Chernikov, «Effect of viscosity of partings in block hierarchic media on propagation of low frequency pendulum waves,» Journal of Mining Science, No. 3 (2008).


MATHEMATICAL MODEL OF INTERACTION BETWEEN THE LOCALIZATION SYSTEM OF AN UNDERGROUND PNEUMATIC DRIFT PUNCH AND. A. LONG PIPELINE
E. V. Denisova and S. Yu. Gavrilov

The paper illustrates the influence exerted by underground pipelines on the efficiency of localization system of a pneumatic drift punch. The authors offer an assessment method for the receiver input power by friendly signal refection from an infinite conductive pipeline. The FEM modeling is performed for a directivity pattern of IP4603 pneumodrift punch and a parallel located pipe with the set diameter in the horizontal working plane of the punch.

Pneumatic drift punch, receiving antenna, directivity pattern, electromagnetic properties, soil, pipeline, scattering cross-section

REFERENCES
1. E. V. Pleshakova and S. Yu. Gavrilov, «Russian Federation Paten No. 2338876. A method to find deviation angle of a pneumatic punch form the pre-set trajectory,» Byull. Izobret., No. 32 (2008).
2. R. M. Sedletskii, «Scattering cross-section of the perfect conductivity simplest shape bodies in the complex permeability media,» Zh. Radioelektr., No. 10 (2001).
3. K. Meinke, Radio Engineering Reference Book [in Russian], Gosenergoizdat, Moscow — Lenignrad (1960). 4. G. T. Markov, Antennas [in Russian], Gosenergoizdat, Moscow — Leningrad (1960).
5. M. I. Finkel’shtein, V. I. Karpukhin, V. A. Kutev, and V. N. Metelkin, Subsurface Radiolocation [in Russian], Radio Svyaz, Moscow (1994).
6. A. D. Ruban, Yu. N. Baukov, and V. L. Shkuratnik, Mining Geophysics. Electrometric Methods for Geocontrol. Part III: Higher-Frequency Electrometric Methods. Study Guide [in Russian], MGGU, Moscow (2002).
7. A. L. Drabkin and V. L. Zuzenko, Antenna-Feeder Arrangements [in Russian], Sov. Radio, Moscow (1961).
8. G. T. Ruck, D. E. Barric, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section. Handbook, Vоl. 1 — 4, Plenum Press, New York (1970).
9. A. I. Potekhin, Some Problems of the Electromagnetic Wave Diffraction [in Russian], Sov. Radio, Moscow (1948).
10. N. I. Skolnik, Radiolocation Handbook [in Russian], Sov. Radio, Moscow (1976).


RESULTS OF THE INTEGRATED GEOPHYSICAL AND GEODETIC INVESTIGATION OF THE STRESS-STRAIN STATE IN TASHTAGOL ORE FIELD
T. V. Lobanova and S. V. Moiseev

The paper describes observations over the gravitation and electromagnetic field variations in a 900 m deep opening in Tashtagol Iron Ore Mine, as well as monitoring of movements in the rock mass and on the earth’s surface. The results provide characterization of the variability of the stress-strain state in the rock mass, and the rock pressure manifestations in the mining area.

Electromagnetic radiation indicators, background values, EMR intensity, gravitation acceleration, movement, rock pressure manifestations, seismic event

REFERENCES
1. N. G. Dubynin, «What mining technology would be rational for deep mineral deposits?» Journal of Mining Science, No. 2 (1984).
2. M. V. Kurlenya, V. I. Boyarkin, I. A. Avzalov, and A. A. Eremenko, «Geomechanical basis for predicting rock bursts in the Tashtagol’s iron ore field,» Journal of Mining Science, No. 5 (1987).
3. M. V. Kurlenya, G. I. Kulakov, and V. F. Khramtsov, «Influence of a relief slot on the stress state of bottoms of ore blocks,» Journal of Mining Science, No. 3 (1990).
4. V. V. Zhadin, «Nature of seismic phenomena at the Tashtagol Mine in 1981 — 1983,» Journal of Mining Science, No. 1 (1985).
5. V. S. Kuksenko, I. E. Inzhevatkin, B. Ts. Manzhikov, et al., «Physical and methodical principles of rock burst prediction,» Journal of Mining Science, No. 1 (1987).
6. E. I. Shemyakin, M. V. Kurlenya, and G. I. Kulakov, «On classification of rockbursts,» Journal of Mining Science, No. 5 (1986).
7. V. V. Maslennikova and N. V. Semevskaya, «Determination of fissuring in an excavated rock mass by the electromagnetic radiation,» Journal of Mining Science, No. 2 (1978).
8. V. V. Ivanov, P. V. Egorov, P. A. Kolpakova, and A. G. Pimonov, «Crack dynamics and electromagnetic radiation in loaded rocks,» Journal of Mining Science, No. 5 (1988).
9. M. V. Kurlenya, A. G. Vostretsov, G. I. Kulakov, and G. E. Yakovitskaya, «Estimation of duration of electromagnetic-radiation signals in rock failure,» Journal of Mining Science, No. 4 (1999).
10. L. V. Neverov (Ed.), Instruction on Surveyor’s Pickup and Situation and Relief Surveying by Global Navigations Satellite Systems GLONASS and GPS. In Force Since March 1, 2002 [in Russian], TSNIIGAiK, Moscow (2002).
11. 4600 LS Surveyor Operation Guide. Part Number: 27564–00 [in Russian], Edition A (1995).
12. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Pendulum waves. Part III: Data of on-site observations,» Journal of Mining Science, No. 5 (1996).
13. M. V. Kurlenya and V. N. Oparin, «Problems of nonlinear geomechanics. Part II,» Journal of Mining Science, No. 4 (2000).
14. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, «On attenuation of pendulum-type waves in a block rock mass,» Journal of Mining Science, No. 5 (2006).


DETERMINATION OF THE ULTIMATE TENSILE STRENGTH OF ROCKS BY THE UNAIXIAL COMPRESSION TEST DATA
B. A. Rychkov, Zh. Y. Mamatov, and E. I. Kondrat’eva

Based on the hypothesized material-independent relationship of the normal and shear stresses on the plane of shear, the authors have plotted an envelope of Mohr’s circles, that represents a rock strength condition in the compression stress domain. The relation of the maximal principal stresses extends to the tension domain as a hyperbola, and its parameters can be obtained only in the non-uniform triaxial compression tests. The hyperbolic equation derived provides, in particular, the ultimate tensile strength of rocks.

Rocks, stresses, plane of shear, Mohr’s circles, strength condition, ultimate tensile strength

REFERENCES
1. B. G. Tarasov, «Deformation and failure behavior in rocks under high pressures,» in: Synopsis of Dr.Eng. Thesis [in Russian], Saint Petersburg (1991).
2. R. Maklamur and K. E. Grey, «Mechanical properties of anisotropic sedimentary rocks,» Transactions of the American Engineering Society «Machine Engineering Design and Technology», Vol. 89, No. 1 (1967).
3. B. A. Rychkov, "Yield criterion, dilatation, and rock failure, Journal of Mining Science, No. 1 (2001).
4. B. A. Rychkov and Zh. Y. Mamatov, «Shear plane orientation and the envelope of Mohr’s circles in rocks,» in: Khristianovich’s 17th International Scientific School "Deformation and Fracture of Defect Materials and Dynamic Phenomena in Rocks and Excavations [in Russian], Alushta (2007).
5. A. V. Pogorelov, Differential Geometry [in Russian], Nauka, Moscow (1974).
6. Yu. M. Kartashev, B. V. Matveev, G. V. Mikheev, and A. B. Fadeev, Rock Strength and Deformability [in Russian], Nedra, Moscow (1970).
7. T. B. Duishenaliev, K. R. Koichumanov, R. M. Sultanalieva, and M. Chynybaev, «Quantitative description of Mohr’s theory of failure,» in: Khristianovich’s 17th International Scientific School "Deformation and Fracture of Defect Materials and Dynamic Phenomena in Rocks and Excavations [in Russian], Alushta (2007).
8. A. N. Stavrogin and A. G. Protosenya, Rock Plasticity [in Russian], Nedra, Moscow (1979).


ROCK FAILURE


ASSESSMENT OF ABRASIVITY BY PHYSICO-MECHANICAL PROPERTIES OF ROCKS
V. N. Oparin and A. S. Tanaino

The paper describes a new estimation method for rock abrasivity as a function of grain size, porosity, rock-forming mineral hardness, structural bond strength and humidity. The cumulative effect of these properties on the rock abrasive ability is represented as a sum of dimensionless indexes in the canonical structural-hierarchical scale.

Rock abrasivity, porosity, rock-forming mineral hardness, structural bond strength, humidity, rock classification by abrasivity

REFERENCES
1. L. A. Shreiner, Mechanical and Abrasive Properties of Rocks [in Russian], Gostoptekhizdat, Moscow (1958).
2. L. I. Baron and A. V. Kuznetsov, Rock Abrasivity When Extracted [in Russian], AN SSSR, Moscow (1961).
3. V. I. Karpov, «Rock hardness and abvrasivity determination in rotation drilling,» in: Physico-Mechanical Properties, Pressure and Fracture of Rocks [in Russian], Issue 1, AN SSSR, Moscow (1962).
4. A. I. Spivak, Abrasive Ability of Rocks [in Russian], Nedra, Moscow (1972).
5. O. N. Golubintsev, Mechanical and Abrasive Properties of Rocks and Their Drillability [in Russian], Nedra, Moscow (1968).
6. N. I. Lyubimov, Principles of Classification and Failure of Rocks in Exploration Drilling [in Russian], Nedra, Moscow (1967).
7. Brown E. T. (Ed.), ISRM. Rock Characterisation Testing and Monitoring ISRM Suggested Methods, Pergamon Press (1981).
8. M. V. Kurlenya and V. N. Oparin, "Scale factor of phenomenon of zonal disintegration of rocks and canonical series of atomic and ionic radii, Journal of Mining Science, No. 2 (1996).
9. V. N. Oparin, V. F. Yushkin, A. A. Akinin, and E. G. Balmashnova, «A new scale of hierarchically structured representations as a characteristic for ranking entities in a geomedium,» Journal of Mining Science, No. 5 (1998).
10. E. I. Shemyakin, M. V. Kurlenya, V. N. Oparin, et al., «USSR Discovery No. 400. Phenomenon of zonal disintegration of rocks around underground openings,» Byull. Izobret., No. 1 (1992).
11. V. N. Oparin, A. S. Tanaino, and V. F. Yushkin, «Discrete properties of entities of a geomedium and their canonical representation,» Journal of Mining Science, No. 3 (2007).
12. M. G. Abramson, B. M. Baidyuk, V. S. Zavaretsky, et al., Reference on the Mechanical and Abrasive Properties of Rocks in Oil and Gas Formations [in Russian], Nedra, Moscow (1985).
13. V. Ryka and A. Malishevskaya, Glossary on Petrography [Polish translation], Nedra, Moscow (1989).
14. M. I. Solodukhin and I. V. Arkhangel’skaya, Geotechnic and Hydrogeological Survey Manual for a Geo Technician [in Russian], Nedra, Moscow (1982).
15. Yu. F. Alekseev, The Use of Data on Rock Mechanical and Abrasive Properties in Drilling [in Russian], Nedra, Moscow (1968).
16. V. V. Rzhevsky and G. Y. Novik, Basics of the Physics of Rocks [in Russian], Nedra, Moscow (1984).
17. V. P. Efimov, «Gradient approach to determination of tensile strength of rocks,» Journal of Mining Science, No. 5 (2002).
18. K. N. Trubetskoy, M. G. Potapov, E. N. Vinnitsky, et al., Open Mining. Reference [in Russian], Gorn. Byuro, Moscow (1994).


FRACTURING BEHAVIOR OF FEATHER SALT ROCK SAMPLES UNDER COMPRESSION
V. N. Aptukov, S. A. Konstantinova, and A. F. Merzlyakov

The paper presents the compression test results for salt rock samples and the study into the stress-strain state of cylindrical samples with different height-diameter ratios. Based on the analysis of a representative structural element of the sample material with a spherical pore, a variant of the fracture mechanism in the salt rock samples under compression is offered, that explains the abnormal response of the limit compression stress value to the geometry of samples in the conditions of dry friction and sliding due to lubrication.

Stress-strain state, porosity, fracture mechanism

REFERENCES
1. L. S. Burshtein, Static and Dynamic Rock Testing [in Russian], Nedra, Leningrad (1970).
2. G. N. Kuznetsov, Mechanical Properties of Rocks [in Russian], Ugletekhizdat, Moscow (1947).
3. E. Coker and L. Filon, Optical Methods [Russian translation], Gosizdat, Moscow (1928).
4. M. M. Muzdakbaev and V. S. Nikiforovskii, «Compression strength of materials,» Prikl. Mekh. Tekh. Fiz., No. 2 (1978).
5. I. B. Vaulina, O. V. Zal’tszeiler, and A. F. Merzlyakov, «Some of research findings on strength and strain parameters of salt rock samples extracted from partings,» in: Winter School on Solid Mechanics (15th). Collected Works. Part I [in Russian], UrO RAN, Ekaterinburg (2007).
6. A. A. Baryakh, S. A. Konstantinova, and V. A. Asanov, Salt Rock Deformation [in Russian], UrO RAN, Ekaterinburg (1996).
7. V. N. Aptukov, L. V. Landik, and A. V. Fonarev, Finite Element Method and Irregular Meshes for Stationary Problems on Heat Transfer and Elastic Body Statics. Study Guide [in Russian], PGU, Perm (2002).
8. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill (1970).


SCIENCE OF MINING MACHINES


NUMERICAL STUDY INTO DYNAMICS OF SELF-OSCILLATORY HYDROPERCUSSION SYSTEMS. PART III: BACK-ACTION SYSTEMS
L. V. Gorodilov

The paper describes a mathematical model of a 3D back-action hydropercussion system of self-excited oscillation type. The author determines the space of dynamic similarity criteria and numerically investigates the output characteristics of the mentioned system. By the analytical results shown as nomograms of isolines plotted for the integral characteristics and based on the theoretical oscillograms and phase curves of the dynamic characteristics, the behavioral features of the system in the space of the main similarity criteria have been revealed.

Percussion system, self-oscillation, limit cycle, similarity criteria, characteristics, autoresonance

REFERENCES
1. L. V. Gorodilov, «Numerical study into dynamics of self-oscillatory hydropercussion system. Part I: Double-acting systems,» Journal of Mining Science, No. 6 (2007).
2. L. V. Gorodilov, «Numerical study into dynamics of self-oscillatory hydropercussion system. Part II: Direct action systems,» Journal of Mining Science, No. 2 (2008).
3. L. V. Gorodilov and P. Ya. Fadeev, «Analysis and classification of effective construction arrangements for self-oscillatory hydropercussion systems,» in: Proceedings of the Conference in Partnership with the Foreign Scientists on Fundamental Problems of the Man-Made Geomedium [in Russian], Novosibirsk (2006).
4. A. P. Arkhipenko and A. I. Fedulov, Hydropercussion Machines [in Russian], IGD SO AN SSSR, Novosibirsk (1991).
5. L. V. Gorodilov, «Model of a hydropercussion system with a uniform fluid flow source,» in: The 3rd International Scientific Symposium Proceedings «Percussion-Vibration Systems, Machines, Technologies» [in Russian], Orel (2006).
6. L. V. Gorodilov, «Mathematical models of hydraulic percussion systems,» Journal of Mining Science, No. 5 (2005).
7. T. S. Akinfeev and V. I. Baitskii, «Autoresonance operation modes of air-percussion systems,» Mashinoved., No. 1 (1977).


MINERAL MINING TECHNOLOGY


DEVELOPMENT OF THE LONG-DISTANCE PIPELINE TRANSPORT FOR BACKFILL MIXES IN TERMS OF OKTYABRSKY MINE
А. P. Tapsiev, A. N. Anushenkov, V. A. Uskov, Yu. V. Artemenko, and B. Z. Pliev

The characteristics and development prospects of backfilling in deep mines are discussed. The authors propose a new engineering solution for the long-distance pipeline transport of the high density consolidating backfills by using hydrodynamic pressure activators. This technology allows a longer transportation distance, up to 3.5 km. The pilot-full-scale test procedure for the technology is developed and proved on a test ground in Oktyabrsky Mine, Transpolar Branch of «GMK Norilsk Nickel» Joint-Stock Co.

Mining conditions, pipeline transport, backfill mix, rheology, hydrotransport, hydrodynamic activation

REFERENCES
1. V. N. Oparin, et al., Current State, Challenges and Policy of Mining Activities in Norilsk Mines [in Russian], Izd. SO RAN, Novosibirsk (2008).
2. V. N. Oparin, et al., Zonal Disintegration of Rocks and the Stability of Mine Workings [in Russian], Izd. SO RAN, Novosibirsk (2008).
3. K. N. Trubetskoi, D. M. Bronnikov, S. V. Kuznetsov, and V. A. Trofimov, «Stability of rock masses based on the criterion of the dynamic manifestation of mine pressure during the depletion of a separation pillar,» Journal of Mining Science, No. 2 (1997).
4. V. N. Reva, «Stability criteria of underground workings under zonal disintegration of rocks,» Journal of Mining Science, No. 1 (2002).
5. V. I. Korotkikh, A. P. Tapsiev, V. A. Red’kin, and I. S. Selyaev, «Modernization of technological flowsheets of protective layer formation in mining of flat-dipping ore deposits,» Journal of Mining Science, No.3 (1990).
6. V. N. Oparin, I. I. Ainbinder, Yu. I. Rodionov, et al., «Concept of a mine of tomorrow for deep mining at gentle copper-and-nickel deposits,» Journal of Mining Science, No. 6 (2007).
7. V. N. Oparin, V. I. Vostrikov, A. P. Tapsiev, et al., «Seismic activity it mines of Norilsk complex deposit over a period 1994 — 2005,» in: Proceedings of the Conference on Geodynamics and Stress State of Earth’s Interior-2006 [in Russian], IGD SB RAS, Novosibirsk (2006).
8. V. N. Oparin, V. I. Vostrikov, A. P. Tapsiev, et al., «Kinematic criterion for prediction of critical rock mass state by the mine seismic data,» Journal of Mining Science, No. 6 (2006).
9. V. N. Oparin, A. P. Tapsiev, V. I. Vostrikov, et al., «On possible causes of increase in seismic activity of mine fields of the Norilsk deposit in 2003. Part I: Seismic regime,» Journal of Mining Science, No. 4 (2004).
10. V. N. Oparin, V. I. Vostrikov, V. F. Yushkin, A. P. Tapsiev, et al., «Video logging probe,» Journal of Mining Science, No. 6 (2006).
11. A. V. Leont’ev, «Analysis of natural stresses according to the measurement results in mines in the territory of Northern Eurasia,» Journal of Mining Science, No. 1 (2001).
12. A. P. Konovalov, A. I. Efimov, Kh. Kh. Kozhiev, and N. V. Gvozdevskii, «New trends in the long-term mineral development,» Gorn. Zh., No. 3 (2002).
13. A. P. Konovalov, V. V. Arshavskii, V. I. Khutsishvili, et al., «Underground backfilling and its modernization prospects,» Gorn. Zh., No. 7 (2001).
14. A. N. Anushenkov, A. M. Freidin, and V. A. Shalaurov, «Preparation of a molten solidifying fill from production wastes,» Journal of Mining Science, No. 1 (1998).
15. 1V. I. Shtele, Ya. Ya. Kusin’sh, and A. N. Anushenkov, «Author’s Certificate No. 1654603. Activator of fluid media,» Byull. Izobret., No. 21 (1991).
16. V. I. Shtele, A. N. Anushenkov, and O. B. Oseev, «Author’s Certificate No. 1710782. Activator of liquid consolidating backfill mixtures,» Byull. Izobret., No. 5 (1994).
17. A. N. Anushenkov, «Russian Federation Patent No. 013131. Technology of paste consolidating backfill production in a ball mill,» Byull. Izobret., No. 9 (1994).
18. A. N. Anushenkov, Development of Complexes for Preparation and Transportation of Mining Consolidating Fills [in Russian], Izd. GUTsMiZ, Krasnoyarsk (2006).
19. A. M. Prokhorova (Ed.), Physical Encyclopedia [in Russian], Sov. Entsiklopedia, Moscow (1983).


MINE AIR-GAS DYNAMICS


AXIAL TUNNEL FANS: ESTIMATE OF BLADE ROW PRESSURE LOSSES AND VALIDATION OF RATIONAL DESIGN PARAMETERS
N. A. Popov

The paper presents the calculation of pressure losses in blade rows of an impeller and directing vanes for a number of axial tunnel fans. The found rationality domains of the design parameters for fans with impeller diameters 1600, 1800, 2100, 2400 mm will allow assessment of a fan installation efficiency as early as at the design stage. Also, the author has validated the choice of an aerodynamic configuration and design parameters for the components of a fan, and calculated geometry of the fan impeller blades for subway station-to-station block ventilation.

Axial fan, double-type sheet blade, drag-to-lift ratio, aerodynamic configuration, rational design parameters

REFERENCES
1. V. Ya. Tsodikov, Subway Ventilation and Heat Supply [in Russian], Nedra, Moscow (1975).
2. A. M. Krasyuk, Tunnel Ventilation in Subways [in Russian], Nauka, Novosibirsk (2006).
3. N. N. Petrov, N. A. Popov, E. A. Batyaev, and V. A. Novikov, «Theory and design of reversible axial fans with turn in motion blades of impeller,» Journal of Mining Science, No. 5 (1999).
4. I. V. Brusilovsky, The Aerodynamics of Axial Fans [in Russian], Mashinostroenie, Moscow (1984).
5. I. V. Brusilovsky, The Aerodynamic Design of Axial Fans [in Russian], Mashinostroenie, Moscow (1986).
6. S. A. Dovzhik, «Research of the aerodynamics of an axial subsonic compressor,» in: TSAGI Transactions, Issue 1099 [in Russian], TSAGI, Moscow (1968).
7. S. A. Dovzhik and A. S. Ginevsky, «Pressure losses in blade rows of an axial subsonic compressor,» in: Industrial Aerodynamics, Issue 20 [in Russian], Oborongiz, Moscow (1961).
8. A. V. Kolesnikov, «Calculation of secondary losses in the axial fan impeller,» in: Industrial Aerodynamics, Issue 17 [in Russian], Oborongiz, Moscow (1960).
9. N. A. Popov and N. N. Petrov, «Evaluation of pressure losses in blade rings of axial mine fans and substantiation of their rational design parameters,» Journal of Mining Science, No. 4 (2005).
10. N. A. Popov, A. M. Krasyuk, and O. V. Lavrova, «Validation of standard size of a station-to-station block fan to be used in routine and emergency modes of the subway ventilation,» in: Proceedings of the Conference in Partnership with Foreign Scientists on Fundamental Problems of Man-Made Environment. Vol. 2. Machine Engineering [in Russian], IGD SO RAN, Novosibirsk (2007).
11. State Standard No. 11004–84, Main Ventilation Mine Fans. Specifications [in Russian], Izd. Standartov, Moscow (1984).
12. I. V. Brusilovsky, Aerodynamic Configurations and Specifications of Axial Fans by TSAGI [in Russian], Nedra, Moscow (1978).
13. M. I. Frishman, «Aerodynamic improvement of mine fan installations with axial fans,» Synopsis of Thesis of PhD Eng. [in Russian], A. A. Skochinsky IGD, Moscow (1984).
14. A. M. Krasyuk, I. V. Lugin, and T. G. Glotova, «Validation of fan parameters to maintain emergency ventilation in subway tunnels,» in: Proceedings of the International Conference on Challenges and Prospects of Mining Sciences [in Russian], IGD SO RAN, Novosibirsk (2006).


MINERAL DRESSING


STRONTIUM REMOVAL FROM AQUEOUS MEDIA BY NATURAL AND MODIFIED SORBENTS
G. R. Bochkarev and G. I. Pushkareva

The article presents the analysis of application of a natural and then modified mineral sorbent to strontium removal from natural and waste waters. The authors have shown the high-efficient sorption capacity of naturally occurring and thermally treated brucite relative to strontium. Besides, they have revealed the relationships of the mineral sorption and pH of a water medium, as well as the interaction of strontium and the sorbent surface.

Sorption, brucite, radioactive nuclides, extraction ratio

REFERENCES
1. G. R. Bochkarev and G. I. Pushkareva, «New natural sorbent to extract metals from aqueous media,» Journal of Mining Science, No. 4 (1998).
2. G. I. Pushkareva, «Sorption extraction of metals from mono- and multicomponent solutions using brucite,» Journal of Mining Science, No. 6 (1999).
3. G. R. Bochkarev, G. I. Pushkareva, A. I. Masliy, and A. G. Belobaba, "Combination extraction of heavy metal ions from production solutions and waste waters, Tsvet. Metally, No. 1 (2008).
4. T. G. Timoshenko, G. N. Pshinko, B. Yu. Kornilovich, et al., «Ferritic removal of 90Sr and U(VI) from radioactive waters,» Khim. Tekhnol. Vody, No. 5 (2007).
5. O. Yu. Baranova, «Protection of water bodies from man-produced radio nuclides by using opal-crystobalite rock-based sorbents,» in: Synopsis of PhD Eng. Thesis [in Russian], Ekaterinburg (2006).
6. V. N. Pak and N. G. Obukhova, «Sorption of Sr2+ and Cu2+ cations from water solutions by iron-bearing slimes,» Prikl. Khim., No. 2 (1995).
7. B. Yu. Kornilovich, «Water body protection from nuclear pollution,» Khim. Tekhnol. Vody, No. 1 (1998).
8. G. I. Pushkareva, «Effect of temperature treatment of brucite on its sorption properties,» Journal of Mining Science, No. 6 (2000).


THE ENABLING TECHNOLOGY FOR RECOVERY OF VALUED COMPONENTS FROM MINERALS IN THE UPPER AND MID AMUR REGION
А. P. Sorokin, V. S. Rimkevich, L. P. Dem’yanova, and T. V. Artemenko

Based on the physico-technical operations involved in the mineral processing technologies, the optimal production conditions are found for refractory fiber materials, aluminium, silicium, their compounds and other valued components. Ecologically safe and efficient aggregate technologies are developed for recovery of valued components from nonmetallic minerals and anthracides (brown coals).

Based on the physico-technical operations involved in the mineral processing technologies, the optimal production conditions are found for refractory fiber materials, aluminium, silicium, their compounds and other valued components. Ecologically safe and efficient aggregate technologies are developed for recovery of valued components from nonmetallic minerals and anthracides (brown coals).

REFERENCES
1. A. P. Sorokin, V. Z. Mezhakov, V. S. Rimkevich, et al., «Development of mining-industrial complex in the Amur Region,» Vestnik DVO RAN, No. 6 (2006).
2. Evaluation of Aluminium Raw Resources in the Far East (Research Report) [in Russian], Izd. DVIMS, Khabarovsk (1979).
3. V. G. Moiseenko, V. V. Parkhotsik, and V. Yu. Skibitsky, «Russian Federation Patent No. 2116268. Fiber refractory production process,» Byull. Izobret., No. 21 (1998).
4. V. S. Rimkevich, Yu. N. Malovitsky, and L. P. Dem’yanova, «Russian Federation Patent No. 2286947. Process for treatment of silica-bearing raw materials,» Byull. Izobret., No. 31 (2006).
5. A. A. Marakushev, I. A. Zubenko, Yu. N. Malovitsky, et al., «Studies of immisibility of halogene-silicate melts and silicium production by electrolysis of (NH4)2SiF6 water solution,» // Bul. Moscow Obshch. Lyub. Prirody: Geologia, 80, Issue 5 (2005).
6. A. P. Sorokin, I. F. Savchenko, V. D. Kichanov, et al., «Amur Region low-calorific coals: coal resources and perspectives of utilization,» Res., Tekhnol., Ekonom., No. 1 (2004).
7. I. F. Savchenko and A. P. Sorokin, «Russian Federation Patent No. 2252948. Production process for lumpy fuel from highly-moisture coal,» Byull. Izobret., No. 15 (2005).


Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2019. Информация о сайте