Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Знак «Шахтерская слава» Лаборатория механики деформируемого твердого тела и сыпучих сред Кольцевые пневмоударные машины для забивания в грунт стержней
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2009 год » JMS, Vol. 45, No. 5, 2009

JMS, Vol. 45, No. 5, 2009


L. A. Nazarova and L. A. Nazarov

The authors employ the elastic-plastic dilatancy model to consider regularities for origin and evolution of disintegration zones in rock masses in the vicinity of mine workings and abnormal areas at faults. It is established that the disintegration zones grow in size practically under the linear law with reduction in the dilatancy factor.

Rock mass, disintegration zone, elastic-plastic model, dilatancy, finite element method

1. V. N. Oparin, A. P. Tapsiev, M. A. Rozenbaum, et al., Zonal Rock Disintegration and Stability of Underground Mine Workings [in Russian], Izd. SO RAN, Novosibirsk (2008).
2. E. I. Shemyakin, M. V. Kurlenya, V. N. Oparin, et al., «USSR Invention No. 400. Phenomenon of zonal rock disintegration around underground mine workings,» Byull. Izobret., No. 1 (1992).
3. M. A. Guzev and V. V. Makarov, Deformation and Failure of Heavily Compressed Rocks around Mine Workings [in Russian], Dal’nauka, Vladivostok (2007).
4. A. Cox and R. B. Hart, Plate Tectonics: How It Works, Blackwell Scientific Publications, Palo Alto, Calif (1986).
5. X. Le Pichon, J. Francheteau, and J. Bonnin, Plate Tectonics, Elsevier Scientific Publishing Company, Amsterdam, London, New-York (1973).
6. V. N. Nikolaevskiy, Geomechanics and Fluid Dynamics [in Russian], Nedra, Moscow (1996).
7. D. I. Imamutdinov and A. I. Chanyshev, «Solving the elastic-plastic problem of an extended cylindrical mine working,» Journal of Mining Science, No. 5 (1988).
8. B. D. Annin and G. P. Cherepanov, Elastic-Plastic Problem [in Russian], Nauka, Novosibirsk (1983).
9. N. I. Ostrosablin, Plane Elastic-Plastic Distribution of Stresses around Circular Hole [in Russian], Nauka, Novosibirsk (1984).
10. A. I. Chanyshev and I. M. Abdulin, «Characteristics and the relations on them at the stage of post-limit deformation in rocks,» Journal of Mining Science, No. 5 (2008).
11. S. V. Lavrikov, O. A. Mikenina, and A. F. Revuzhenko, «Rock mass deformation modeling using a non-Archimedean analysis,» Journal of Mining Science, No. 1 (2008).
12. Yu. P. Stefanov and M. Tierselen, «Modeling of high-porous material behavior in shaping of locally compaction bands,» Fiz. Mezomekh., 10, No. 1 (2007).
13. С. Edelbro, «Numerical modeling of observed fallouts in hard rock masses using an instantaneous cohesion-softening friction-hardening model,» Tunnelling and Underground Space Technology, 24, Issue 4 (DOI: 10.1016/j.tust.2008.11.004) (2009).
14. W. Minkley, W. Menzel, H. Konietzky, and L. te Kamp, A Visco-Elasto-Plastic Softening Model and Its Application for Solving Static and Dynamic Stability Problems in Potash Mining, http://www.itasca-udm.com/media/download/minkley/minkley_publication.pdf (2004).
15. N. Barton, Rock Quality, Seismic Velocity, Attenuation and Anisotropy, Taylor and Francis Group, London, UK (2007).
16. Yu. N. Rabotnov, Mechanics of a Deformable Solid [in Russian], Nauka, Moscow (1979).
17. O. C. Zienkiewicz, Finite Element Method in Engineering Science, McGraw-Hill (1971).
18. L. A. Nazarova, «Stress state of a sloping-bedded rock mass around a working,» Journal of Mining Science, 2 (1985).
19. M. A. Sadovsky, L. G. Bolkhovitinov, and V. F. Pisarenko, Medium Deformation and Seismic Process [in Russian], Nauka, Moscow (1987).
20. E. I. Shemyakin, M. V. Kurlenya, and G. I. Kulakov, «On classification of rock outbursts,» Journal of Mining Science, No. 5 (1986).
21. G. Mandl, Mechanics of Tectonic Faulting. Models and Basic Concepts, Elsevier, Amsterdam, Oxford, New-York (1988).
22. L. A. Nazarova and L. A. Nazarov, «Process for assessment of parameters of a would-be earthquake focus based on the daylight-surface displacement data,» Dokl. AN, 427, No.4 (2009).
23. Yu L. Rebetskiy, Tectonic Stresses and Strength of Rock Masses [in Russian], IKTs Akademkniga, Moscow (2007).
24. N. R. Barton, «Deformation phenomena in jointed rock,» Geotechnique, 36, No. 2 (1986).
25. L .A. Nazarova, «Estimating the stress and strain fields of the Earth’s crust on the basis of seismotectonics data,» Journal of Mining Science, No.1 (1999).
26. M. D. Novopashin, Modern Approaches in Geodynamics of Rock Masses of the Upper Lithosphere: Origin, Parameters, Effect of Mineral Resource Development [in Russian], Izd. SB RAS, Novosibirsk (2008).

V. M. Seryakov

The stress state of a rock mass over a goaf is analyzed by using the mathematical modeling. The initial stress method is used to consider caving and failure zones within overlying rocks and makes it possible to derive an effective estimation algorithm for the undermined rock state.

Rock mass, stress state, mathematical simulation, caving, initial stress method

1. Ya. Farmer, Underground Coal Excavations [in Russian], Nedra, Moscow (1990).
2. A. A. Baryakh and A. K. Fedoseev, «Geomechanical forecast for distribution of fissuring areas in the saliferous measures of the Upper Kama Potash Salt Deposit,» Journal of Mining Science, No. 5 (2007).
3. S. A. Konstantinova, «On a disastrous rock pressure criterion for stratified deposit exploitation,» Journal of Mining Science, No. 2 (2009).
4. M. V. Kurlenya, V. M. Seryakov, and A. A. Eremenko, Production-Induced Geomechanical Stress Fields [in Russian], Nauka, Novosibirsk (2005).
5. S. D. Viktorov, M. A. Iofis, and S. A. Goncharov, Convergence and Failure of Rocks [in Russian], Nauka, Moscow (2005).
6. I. A. Turchaninov, M. A. Iofis, and E. V. Kaspar’yan, Fundamentals of Rock Mechanics [in Russian], Nedra, Leningrad (1989).
7. O. C. Zienkiewicz, Finite Element Method in Engineering Science, McGraw-Hill (1971).
8. A. B. Fadeev, Finite Element Method in Geomechanics [in Russian], Nedra, Moscow (1987).
9. V. M. Seryakov, «On one approach to calculation of the stress-strain state of a rock mass in vicinity of a goaf,» Journal of Mining Science, No. 2 (1997).
10. V. M. Seryakov, «Calculation of the stress state with regard for sequence of filling mass formation,» Journal of Mining Science, No. 5 (2001).
11. D. H. Trollope, H. Bock, B. S. Best, K. Walles, and M. J. Fulton, Introduction to Rock Mechanics [in Russian], Mir, Moscow (1983).
12. V. S. Nikiforovsky and E. I. Shemyakin, Dynamic Failure of Solids [in Russian], Nauka, Novosibirsk (1979).
13. G. N. Savin, Concentration of Stresses around Holes [in Russian], Gostekhizdat, Moscow (1951).
14. B. Z. Amusin and A. B. Fadeev, Finite Element Method to Solve Geomechanical Problems [in Russian], Nedra, Moscow (1975).
15. A. A. Borisov, Rock and Stratum Mechanics [in Russian], Nedra, Moscow (1980).
16. S. G. Avershin, M. V. Korotkov, G. N. Kuznetsov, et al., Rocks — Ground Surface Convergence [in Russian], Ugletekhizdat, Moscow (1958).

N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko*, and E. N. Sher

The wave propagation analysis revealed that the low-frequency pendulum wave propagating in a 2D block medium with periodic structure due to the action of local impulse has a two-wave structure. The shape of such wave depends on its propagation direction. Modeling the blast-induced seismic wave propagation in a two-layer block rock mass with the weak upper layer and stiff lower layer showed that the far distant point from the wave excitation source is first reached by the small amplitude pendulum wave running in the stiffer lower layer and then by the delayed maximum-amplitude wave propagating in the upper layer.

Elastic wave, block rock mass, impulse loading, pendulum wave, two-layer medium

1. M. A. Sadovsky, «Natural lumpiness of rocks,» Dokl. AN SSSR, 247, No. 4 (1979).
2. M. V. Kurlenya, V. N. Oparin, and V. I. Vostrikov, «Formation of elastic wave packets in block medium under impact excitation. Pendulum-type waves ,» Dokl. AN SSSR, 333, No. 4 (1993).
3. N. I. Aleksandrova, «Elastic wave propagation in block medium under impulse loading,» Journal of Mining Science, No. 6 (2003).
4. N. I. Aleksandrova and E. N. Sher, «Modeling of wave propagation in block media,» Journal of Mining Science, No. 6 (2004).
5. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, «Experimental investigation in the one-dimensional calculated model of wave propagation in block medium,» Journal of Mining Science, No. 3 (2005).
6. N. I. Aleksandrova, A. G. Chernikov, and E. N. Sher, «On attenuation of pendulum-type waves in a block rock mass,» Journal of Mining Science, No. 5 (2006).
7. M. V. Ayzenberg-Stepanenko and E. N. Sher, «Modeling wave phenomena in media with periodic structures,» Fiz. Mezomekh., 10, No. 1 (2007).
8. E. N. Sher, N. I. Aleksandrova, M. V. Ayzenberg-Stepanenko, and A. G. Chernikov, «Influence of the block-hierarchical structure of rocks on the peculiarities of seismic wave propagation,» Journal of Mining Science, No. 6 (2007).
9. N. I. Aleksandrova, E. N. Sher, and A. G. Chernikov, «Effect of viscosity of partings in block-hierarchical media on propagation of low-frequency pendulum waves,» Journal of Mining Science, No. 3 (2008).
10. V. A. Saraikin, M. V. Stepanenko, and O. V. Tsareva, «Elastic waves in block structures,» Journal of Mining Science, No. 1 (1988).
11. V. A. Saraikin, «Calculation of wave propagation in the two-dimensional assembly of rectangular blocks,» Journal of Mining Science, No. 4 (2008).
12. Lord Rayleigh, «On the maintenance of vibrations by forces of double frequency, and the propagation of waves through a medium endowed with periodic structure,» Phil. Mag., 24, No. 147 (1887).
13. L. Brillouin, Wave Propagation in Periodic Structures, NY, Dover Publication (1953).
14. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, NY, Academic Press (1963).
15. D. J. Mead, «Vibration response and wave propagation in periodic structures,» J. Eng. in Industry, 21, pp. 783–792 (1971).
16. L. I. Slepyan, Nonstationary Elastic Waves [in Russian], Sudostroenie, Leningrad (1972).
17. M. V. Stepanenko and O. V. Tsareva, «Evolution of a shock pulse during its propagation over composite elastic systems,» Journal of Mining Science, No. 3 (1987).
18. O. A. Luk’yashko and V. A. Saraikin, «Transient one-dimensional wave processes in a layered medium,» Journal of Mining Science, No. 2 (2007).
19. E. H. Lee and W. H. Yang, «On waves in composite materials with periodic structure, SIAM,» J. Appl. Math. (1973).
20. J. Achenbach, «Vibrations and waves in directional composites,» in: Mechanics of Composite Materials-2, NY, Academic Press (1975).
21. E. Yablonovitch, «Photonic band-gap crystals,» J. Phys., Condens. Matter. (1993).
22. M. Ayzenberg-Stepanenko and L. Slepyan, «Resonant-frequency primitive waveforms and star waves in lattices,» Journal of Sound and Vibration, 313, pp. 812–21 (2008).
23. G. Osharovich, M. Ayzenberg-Stepanenko, and E. Sher, «Unexpected wave-oscillation effects in lattices of regular structure,» in: The 8th Israeli-Russian Bi-National Workshop 2009 «The Optimization of Composition, Structure and Properties of Metals, Oxides, Composites, Nano and Amorphous Materials», 1, Israeli Academy of Science and Humanities, Jerusalem (2009).

S. I. Sherman

The paper describes the research of fault activation in terms of the Central Asia area, analyzes the time and spatial regularities of this process and probable disturbers for metastability of the fault-and-block crust medium in real time as well as the potential influence of the disturbance sources on the stability of rock masses under mining.

Faults, active faults, activation, seismicity, sources, trigger, strain waves, real time

1. S. I. Sherman, «New data on mechanisms of the fault activation in the Baikal Rift System and the adjacent area,» Dokl. AN, 415, No. 1 (2007).
2. M. A. Sadovsky and V. F. Pisarenko, A Seismic Process in the Block Medium [in Russian], Nauka, Moscow (1991).
3. G. G. Kocharyan and A. A. Spivak, Dynamics of the Block Rock Mass Formation [in Russian], ITSK Akademkniga (2003).
4. G. A. Sobolev, «Faulting dynamics and seismicity,» in: Current Tectonophysics [in Russian], OIFIZ RAN, Moscow (2002).
5. M. V. Gzovsky, Basics of the Tectonophysics [in Russian], Nauka, Moscow (1975).
6. I. M. Petukhov, Mechanics of Rockbursting and Falls [in Russian], Nauka, Moscow (1983).
7. A. B. Slemmons, «Paleoseismicity and fault segmentation,» in: Proceedings of the 1st National Workshop on Paleoseismology, Rendiconti Soc. Geol. It., 13, Rome (1990).
8. A. A. Nikonov, «Active faults: detection and analysis,» Geoekologia, No. 4 (1995).
9. V. G. Trifonov, «Developmental features of active faults,» Geotektonika, No. 2 (1985).
10. V. G. Trifonov, «World map of active faults,» Quarter Int., Spec. Issue, No. 25 (1995).
11. V. G. Trifonov and A. S. Karakhanyan, Geodynamics and the History of Civilizations [in Russian], Nauka, Moscow (2004).
12. Yu. O. Kuz’min, «Modern geodynamics of fault zones,» Fiz. Zemli, No. 10 (2004).
13. V. N. Oparin, B. D. Annin, Yu. V. Chugui, et al., Methods and Instrumentation for Modeling In-Situ Nonlinear Strain Wave Processes in Block Rock Masses [in Russian], SO RAN, Novosibirsk (2007).
14. S. I. Sherman, S. A. Bornyakov, and V. Yu. Buddo, Dynamic Influence Zones of Faults [in Russian], Nauka, Novosibirsk (1983).
15. C. H. Scholz, The Mechanics of Earthquakes and Faulting, 2nd Ed., Cambridge Univ. Press, New York (2002).
16. S. I. Sherman, K. Zh. Seminsky, S. A. Bornyakov, et al., Faulting in the Earth Crust. Shearing Zones [in Russian], Nauka, Novosibirsk (1991).
17. S. I. Sherman, K. Zh. Seminsky, S. A. Bornyakov, et al., Faulting in the Earth Crust. Tension Zones [in Russian], Nauka, Novosibirsk (1992).
18. S. I. Sherman, K. Zh. Seminsky, S. A. Bornyakov, et al., Faulting in the Earth Crust. Compression Zones [in Russian], Nauka, Novosibirsk (1994).
19. S. I. Sherman, A. P. Sorokin, and V. A. Savitsky, «New classification methods for seismically active crust zones by the seismicity index,» Dokl. AN, 401, No. 3 (2005).
20. V. V. Ruzhich, Seismotectonic Destruction of the Crust in the Baikal Rift Zone [in Russian], SO RAN, Novosibirsk (1997).
21. S. I. Sherman, «Faults and tectonic stresses of the Baikal rift zone,» Tectonophysics, 208, Nos. 1 — 3 (1992).
22. S. I. Sherman, «Development of Gzovsky’s concept in the recent tectonophysical research of faulting and seismicity in the earth crust,» Current Tectonophysics [in Russian], OIFZ RAN, Moscow (2002).
23. S. I. Sherman and V. A. Savitsky, «New data on quasi-periodicity of fault activation in real time based upon seismic monitoring in terms of the Baikal Rift System,» Dokl. AN, 408, No. 3 (2006).
24. S. I. Sherman and E. A. Gorbunova, «The wave nature of fault activation in the Central Asia by the seismic monitoring data,» Fiz. Mezomekh., 11, No. 1 (2008).
25. V. N. Oparin, A. D. Sashurin, G. I. Kulakov, et al., Modern Geodynamics of the Crust Rock Masses: Sources, Parameters, Influence on Subsoil Use [in Russian], SO RAN, Novosibirsk (2008).
26. A. A. Nikonov, «Migration of strong earthquakes along principal fault zones in the Central Asia,» Dokl. AN SSSR, 255, No. 2 (1975).
27. V. A. San’kov and K. Zh. Seminsky, «Analysis of the fault-wise displacements in the area of an incipient fault,» Izv. Vuzov. Geolog. Razvedka, No. 4 (1988).
28. K. Kasahara, «Migration of crustal deformation,» Tectonophysics, 52 (1979).
29. Y.-S. Kim and J.-H. Choi, «Fault propagation, displacement and damage zones,» in: Proceedings of Conference Commemorating the 1957 Gobi-Altay Earthquake, Ulaanbaatar, Mongolia (2007).
30. J. G. Anderson, S. G. Wesnousky, and M. W. Stirling, «Earthquake size as a function of fault slip rate,» Bull. Seism. Soc. America, 86, No. 3 (1996).
31. M. V. Nevsky, «Geophysics at the border of centuries,» in: Selected Works of OIFZ RAN Sciences [in Russian], OIFZ RAN, Moscow (1999).
32. V. N. Nikolaevsky and T. K. Ramazanov, «Wave generation and propagation along deep faults,» Izv. AN SSSR. Fiz. Zemli, No. 10 (1986).
33. V. I. Ulomov, «Seismo-geodynamic activation waves and the long-term earthquake forecasting,» Fiz. Zemli (1993).
34. A. S. Malamud and V. N. Nikolaevsky, Earthquakes Cycles and Tectonic Waves [in Russian], Donish, Dushanbe (1989).
35. A. V. Vikulin, Physics of the Wave Seismic Process [in Russian], KGPU, Petropavlovsk- Kamchatski (2003).
36. V. G. Bykov, «Earth’s deformation waves: concept, observations, model,» Geolog. Geofiz., 46, No. 11 (2005).
37. S. V. Gol’din, «Dilatancy, re-packing and earthquakes,» Fiz. Zemli, No. 10 (2004).
38. Yu. V. Riznichenko, Problems of Seismology. Collected Works [in Russian], Nauka, Moscow (1985).
39. K. Zh. Seminsky, Internal Structure of the Terrestrial Fault Zones. Tectonophysical Aspect [in Russian], SO RAN, GEO Branch, Novosibirsk (2003).

Massimo Coli and Niccolò Coli

On the bases of a field geostructural and geomechanical survey, we evaluate the stress field and structural regime responsible for the deformation of the rock-mass in the Machaerus area, the Hashemite Kingdom of Jordan, on the eastern side of the Dead Sea Transform Fault. The resulted data are compared to those from deep mines and base tunnels in order to evaluate the potentiality of using geostructural data to envisage the stress-field for new geoengeneering projects. It resulted the Machareus rock mass was deformed at a depth of about 500–900 m with a deviatoric stresses of the order of σ1 = 15 MPa, σ2 = 10 MPa and σ3 = -25 MPa, being σ3 vertical. The stress field orientation is consistent with the left-lateral kinematics of the nearby Dead-Sea transform fault.

Crack-joint, deformation, stress-field, geomechanics, tectonics

1. M. Barjous and S. Mikbel, «Tectonic evolution of the Gulf of Aqaba-Dead Sea transform fault system,» Tectonophysics, 180 (1990).
2. Y. Hatzor and Z. Reches, «Structures and paleostress in the Gilboa region, western margins of the central Dead Sea rift,» Tectonophysics, 180 (1990).
3. H. Ron, A. Nur, and Y. Eyal, «Multiple strike-slip fault sets: A case study from the Dead Sea Transform,» Tectonics, 9 (1990).
4. E. D. Laws and M. Wilson, «Tectonics and magmatism associated with Mesozoic passive continental margin development in the Middle East,» Journal of the Geological Society of London, 154 (1997).
5. R. W. H. Butler, S. Spencer, and H. M. Griffiths, «Transcurrent fault activity on the Dead Sea Transform in Lebanon and its implications for plate tectonics and seismic hazard,» Journal of the Geological Society of London, 153 (1997).
6. A. Sagy, Z. Reches, and A. Agnon, «Hieratic three-dimensional structure and slip partitioning in the western Dead Sea pull-apart,» Tectonics, 22 (2003).
7. O. V. Lunina, Y. Mart, and A. S. Gladkov, «Fracturing patterns, stress fields and earthquakes in the Southern Dead Sea rift,» Journal of Geodynamics, 40 (2005).
8. R. L. Kovach, G. E. Andreasen, M. E. Getting, and K. El-Kaysi, «Geophysical investigation in Jordan,» Tectonophysics, 180 (1990).
9. P. L. Hancock, A. Al-Kadhi, A. A. Barka, and T. G. Beven, «Aspects of analysing brittle structures,» Annales Tectonicae, 1, No. 1 (1987).
10. M. Coli and N. Coli, «Geology of the Machaerus archaelogical site in the Hashemite Kingdom of Jordan,» Boll. Soc. Geol. It., [in press] (2006).
11. C. D. Martin, «Characterizing in situ stress domains at the AELC Underground Research Laboratory,» Can. Geotech. J., 27 (1990).
12. J. G. Ramsay and M. I. Huber, «The techniques of the modern structural geology,» 2, Folds and Fractures, Academic Press, London (1987).
13. P. L. Hancock and M. S. Atiya, «Tectonic significance of mesofracture systems associated with the Lebanese segment of the Dead Sea Transform fault,» Journal of Structural Geology, 1 (1989).
14. P. L. Hancock , «Joint spectra,» in: Geology in the Real World — the Kingsley Dunham Volume, Eds. Nichol I. & Nesbitt R. W., Inst. Min. Metallurgy, London (1986).
15. A. Teller, «Uniform rock classification system for blasting,» in: III Convegno di Geoingegneria «Scavo in Roccia: Il Futuro e il Futuribile», Torino (1992).
16. D. A. Williamson and C. R. Kuhn, «The unified rock classification system,» in: Rock Engineering Systems for Engineering Purposes, ASTM STP 984, Louis Kirkaldie Ed., American Society for Testing Materials, Philadelphia (1988).
17. R. Hack and M. Huisman, «Estimating the intact rock strength of a rock mass by simple means,» in: Proceedings of the 9th Congress of the International Association of Engineering Geology and Environment, Durban, Republic of South Africa (2002).
18. R. Christiansson and C. D. Martin, «In-situ stress profiles with depth from site characterization programs for nuclear waste repositories,» in: Proceeding of Rock Mechanics «A Challenge for Society», Sarkka & Eloranta (Eds.), A. A. Balkema Pub., Lisse, The Netherlands (2001).
19. A. A. Griffith, «Theory of rupture,» in: Proceedings of 1st International Congress on Applied Mechanics, Delft (1924).
20. B. Kister, P. Teuscher, and H. J. Ziegler, «Lotschberg-basis tunnel Spannungsmessungen und felsmechanische Untersuchungen im Fensterstollen Mithoz,» in: Proceedings of Eurock2000, Aachen, Verlag, Essen (2000).
21. Alpetunnel. Rapporto Finale Degli Studi Preliminari per il Tunnel di Base del Frejus, Alpetunnel (2002). 22. E. Hoek, P. K. Kaiser, and W. F. Bawden, Support of Underground Excavation in Hard Rock, Balkema, Rotterdam (1995).
23. O. A. Pfiffner and J. G. Ramsay, «Constraints on geological strain-rate: arguments from finite strain states of naturally deformed rocks,» J. Geoph. Res., 87 (1982).


S. V. Muchnik

The paper demonstrates that massive blasting at open pits with using the nonelectric initiation system SINV (analog of Nonel) generates free surfaces where the Rayleigh waves arise, that improve loosening of the shattered rock mass.

Open pit, massive blasting, initiation, SINV, Rayleigh waves, interference

1. V. K. Sovmen, I. K. Chunuev, and B. V. Ekvist, «Decreased seismic impact of massive blasting with using nonelectric initiation,» Gorn. Zh., No. 9 (2006).
2. Yu. V. Dolgov, S. A. Likhachev, V. D. Teregel’diev, et al., «Case history of SINV system at Chernigovsky Open Pit,» Gorn. Zh., No. 12 (2001).
3. A. V. Grigor’ev, G. G. Listopad, V. M. Doil’nitsyn, et al., «Case history and prospects of nonelectric initiation systems at open pits of Apatit JSC,» Gorn. Zh., No. 8 (2001).
4. M. M. Graevskii and B. N. Kutuzov, «Technical and economical analysis of the electrical and nonelectrical initiation systems,» Gorn. Zh., No. 5 (2000).
5. A. A. Obgol’ts, V. S. Kumov, B. P. Raspopov, and A. N. Grishin, «Case history of a nonelectrical blasting system at open pits in the Novosibirsk Oblast,» Bezop. Truda Prom., No. 11 (2002).
6. V. K. Sovmen and B. V. Ekvist, «Delay interval calculation procedure for massive blasting with nonelectrical initiation systems,» Gorn. Zh., No. 8 (2006).

V. A. Eremenko, A. A. Eremenko, S. V. Rasheva*, and S. B. Turuntaev*

Based on the analysis into the influence of blasting on the seismic activity in the area of the Tashtagol ore deposit, the paper shows that quantity, energy and concentration of the mining-induced seismic events grows in the blasting site region. The background-values of seismic activity come back in a period between 11 hours to 3 days after the blasting, and the seismic activity intensification depends on the blast energy.

Blast, seismic event, energy, mineral mining

1. N. N. Mel’nikov (Ed.), Mining-Induced Seismicity [in Russian], KNTS RAN, Apatity (2002).
2. M. V. Kurlenya, A. A. Eremenko, and B. V. Shrepp, Geomechanical Problems of Iron-Ore Mining in Siberia [in Russian], Nauka, Novosibirsk (2001).
3. V. V. Adushkin and S. B. Turuntaev, Man-Made Crustal Processes (Hazards and Catastrophes) [in Russian], INEK, Moscow (2005).
4. V. V. Zhadin, «Nature of seismic phenomena at the Tashtagol Mine in 1981 1983,» Journal of Mining Science, No. 1 (1985).
5. V. N. Oparin, A. P. Tapsiev, V. V. Vostrikov, et al., «On possible causes of increase in seismic activity of mine fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk deposit in 2003. Parts I — IV,» Journal of Mining Science, Nos. 4 — 6 (2004) and No. 1 (2005).
6. A. A. Kozyrev, V. V. Timofeev, and M. V. Akkuratov, «Seismicity at Kirov Mine, Apatity KSC, block — pillar mining at Level + 252 m,» in: Complete Underground Ore Mining and Geomechanical Issues in the Difficult Conditions of the Kola Peninsula [in Russian], KNTZ RAN, Apatity (1995).
7. N. M. Syrnikov and V. M. Ryapitsyn, «The Khibiny production-induced earthquake mechanism,» Dokl. AN SSSR, 134, No. 4 (1990).
8. B. V. Shrepp et al., «Prevention of rock bursts in the Tashtagol Mine,» in: Rockbursting Prediction and Prevention in Ore Mines [in Russian], KNTS RAN, Apatity (1987).
9. A. A. Kozyrev, A. V. Lovchikov, S. I. Pernatskiy, and V. A. Shershnevich, «Umbozero Mine: the strongest man-made earthquake, mining context,» Gorny Zh., No. 1 (2002).
10. I. O. Kitov, A. I. Ruzaikin, and D. D. Sultanov, «Study of the induced seismicity in the area of the Uch-Terek River,» Energetich. Stroit., No. 6 (1990).
11. S. B. Turuntaev and I. A. Petrovich, «Heavy blast impact on the regional seismicity,» in: Physical Fields and Dynamics in Interacting Geospheres. Collection of Scientific Papers of the Institute of Dynamics of Geospheres, Russian Academy of Sciences [in Russian], GEOS, Moscow (2007).
12. G. A. Sobolev and A. V. Ponomarev, "Earthquake Physics and Forerunners [in Russian], Nauka, Moscow (2003).
13. Russia 2005 Earthquake Catalog. Collection of the Geophysical Survey, Russian Academy of Sciences [in Russian] (2005).
14. M. A. Sadovsky and V. F. Pisarenko, Seismic Process in a Block-Structure Medium [in Russian], Nauka, Moscow (1991).


А. M. Freidin, S. A. Neverov, and A. A. Neverov

TThe paper describes an estimate of the rock stress-strain state for the current mining conditions at the Makmal Gold Deposit. The rock stability in walls of open-mined chambers, in rock projections and in a dividing pillar is determined. The authors have made recommendations to backfill the mined-out space with overburden rocks and to recover pillars with the one-stage block caving technique.

Mined-out space, rock projections, pillar, stress state, stability

1. O. C. Zienkiewicz, Finite Element Method in Engineering Science, McGraw-Hill (1971).
2. I. T. Aitmatov, V. I. Akhmatov, et al., «Methods and results of investigation of the stressed state of rock masses and the development of effective means of controlling mine pressure during underground excavation of ore,» Journal of Mining Science, No. 4 (1987).
3. A. Zh. Mashanov and A. A. Mashanov, Foundations of the Hard Jointy Rock Mechanics [in Russian], Nauka, Alma-Ata (1985).
4. I. A. Turchaninov, G. A. Markov, V. I. Ivanov, and A. A. Kozyrev, Tectonic Stresses in the Crust and the Stability of Excavations [in Russian], Nauka, Leningrad (1978).
5. B. V. Bokiy, «A unified scientific approach to problems of rock mechanics,» in: VNIMI Transactions, No. 82 (1971).
6. A. M. Freidin, S. A. Neverov, A. A. Neverov, and P. A. Filippov, «Mine stability with application of sublevel caving schemes,» Journal of Mining Science, No. 1 (2008).
7. S. A. Konstantinova and S. A. Chernopazov, «Mathematical modeling of the stress-strain state in rock and artificial masses during slice chamber mining of underpit reserves in the «Internatsionalnaya» kimberlite pipe,» Journal of Mining Science, No. 3 (2005).
8. L. A. Nazarov, L. A. Nazarova, A. M. Freidin, and Zh. K. Alimseitova, «Estimating the long-term pillar safety for room-and-pillar ore mining,» Journal of Mining Science, No. 6 (2006).
9. M. V. Kurlenya, V. M. Seryakov, and A. A. Eremenko, Man-Made Geomechanical Stress Fields [in Russian], Nauka, Novosibirsk (2005).
10. V. D. Baryshnikov and L. N. Gakhova, "Geomechanical substantiation of access roads and slope faces in upward mining of the reserves subjacent the open pit bottom in terms of the mine «Aikhal,» Journal of Mining Science, No. 2 (2008).
11. D. M. Kazikaev, «Geomechanics of underground ore recovery,» in: University Textbook [in Russian], MGGU, Moscow (2005).

E. Bakhtavar, K. Shahriar*, and K. Oraee**

There are many deposits that have the potential to be mined by a combined method of open-pit and underground. In this manner, the most sensitive problem is the determination of the optimal transition depth from open-pit to underground or vice versa. To calculate this depth, a model based on block economic values of open-pit and underground methods together with the Net Present Value (NPV) attained through mining is first presented. During the model, NPV of open-pit is compared to the value of underground for the similar levels. A hypothetical example is used in order to analyze the model in detail. Based on the assumptions made such as: a discount rate of 15 %, each pair of contiguous level-cuts have to mine during one year, and one level as the height of crown pillar, the optimal transition depth was determined to be equal to 62.5 m. Then, level 6 was considered as the suitable crown pillar. Finally, maximum total NPV of the combined mining was calculated to be 25.54 units of currency.

Transition depth, optimization challenge, open-pit, underground, discount rate, NPV

1. S. S. Fuentes, «Going to an underground (UG) mining method,» in: Proceedings of MassMin Conference, Santiago, Chile (2004).
2. J. Chen, D. Guo, and J. Li, «Optimization principle of combined surface and underground mining and its applications,» Journal of Central South University of Technology, 10, No. 3 (2003).
3. S. S. Fuentes and S. Caceres, «Block/panel caving pressing final open pit limit,» CIM Bulletin, No. 97 (2004).
4. E. Arancibia and G. Flores, «Design for underground mining at Chuquicamata Ore body Scoping Engineering Stage,» in: Proceedings of MassMin Conference, Santiago, Chile (2004).
5. G. Flores, «Geotechnical challenges of the transition from open pit to underground mining at Chuquicamata Mine,» in: Proceedings of MassMin Conference, Santiago, Chile (2004).
6. C. Brannon, T. Casten, and M. Johnson, «Design of the Grasberg block cave mine,» in: Proceedings of MassMin Conference, Santiago, Chile (2004).
7. A. Srikant, C. Brannon, D. C. Flint, and T. Casten, «Geotechnical characterization and design for the transition from the Grasberg open pit to the Grasberg block cave mine,» in: Proceedings of Rock Mechanics Conference, Taylor&Francis Group, London (2007).
8. Rio Tinto’s Diamonds Group, Sustainable Development Report of Diavik Diamond Mine, www.Diavik.ca/PDF, 16 (2006).
9. A. Kandiah, "Information about a Western Australian Gold Mine «Kanowana Belle,» http://www.quazen.com/Reference/Education/Kanowna-Belle-Gold-Mine, 20342 (2007).
10. G. Bull, G. MacSporran, and C. Baird, «The alternate design considered for the Argyle underground mine,» in: Proceedings of MassMin Conference, Santiago, Chile (2004).
11. D. Hersant, «Mine design of the Argyle underground project,» in: Proceedings of MassMin Conference, Santiago, Chile (2004).
12. J. Jakubec, L. Long, T. Nowicki, and D. Dyck, «Underground geotechnical and geological investigations at Ekati Mine-Koala North: case study,» Journal of LITHOS, No. 76 (2004).
13. X. Changyu, «A study of stope parameters during changing from open pit to underground at the Meng-Yin diamond mine in China,» Journal of Mining Science and Technology, No. 1 (1984).
14. R. K. Brummer, H. Li, A. Moss, and T. Casten, «The transition from open pit to underground mining: An unusual slope failure mechanism at Palabora,» in: Proceedings of International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering, The South African Institute of Mining and Metallurgy (2006).
15. M. Kuchta, A. Newman, and E. Topal, «Production scheduling at LKAB’s Kiruna Mine using mixed integer programming,» Mining Engineering, April (2003).
16. G. Popov, The Working of Mineral Deposits [Translated from the Russian by V. Shiffer], Mir Publishers, Moscow (1971).
17. A. Soderberg and D. O. Rausch, Surface Mining (Section 4.1), Ed. Pfleider, AIMM, E. P., New York (1968).
18. D. S. Nilsson, «Open pit or underground mining,» in: Underground Mining Methods Handbook, Section.1.5, AIME, New York (1982).
19. D. S. Nilsson, «Surface vs. underground methods,» in: SME Mining Engineering Handbook, Section 23.2, Ed. H. L. Hartman (199)2.
20. D. S. Nilsson, «Optimal final pit depth: Once again, (Technical Paper),» International Journal of Mining Engineering, (1997).
21. J. P. Camus, «Open pit optimization considering an underground alternative,» in: Proceedings of 23th International APCOM Symposium, Tucson, Arizona, USA (1992).
22. T. Tulp, «Open pit to underground mining,» in: Mine Planning and Equipment Selection, Balkema, Rotterdam (1998).
23. J. Chen, J. Li, Z. Luo, and D. Guo, «Development and application of optimum open-pit software for the combined mining of surface and underground,» in: Proceedings of CAMI Symposium, Beijing, China (2001).
24. J. Chen, D. Guo, and J. Li, «Optimization principle of combined surface and underground mining and its applications,» Journal of Central South University of Technology, 10, No. 3 (2003).
25. W. F. Visser and B. Ding, «Optimization of the transition from open pit to underground mining,» in: Proceedings of 4th AACHEN International Mining Symposia High Performance Mine Production, Aachen, Germany (2007).
26. E. Bakhtavar and K. Shahriar, «Optimal ultimate pit depth considering an underground alternative,» in: Proceedings of 4th AACHEN International Mining Symposia High Performance Mine Production, Aachen, Germany (2007).
27. E. Bakhtavar, K. Shahriar, and K. Oraee, «A model for determining optimal transition depth over from open-pit to underground mining,» in: Proceedings of 5th International Conference on Mass Mining, Lule?, Sweden (2008).
28. J. Abdollahisharif, E. Bakhtavar, and K. Shahriar, «Open-pit to underground mining where is the optimum transition depth?» in: Proceedings of 21st WMC & Expo 2008, Sobczyk & Kicki (Eds.), Taylor & Francis Group, London, UK (2008).
29. E. Bakhtavar, K. Shahriar, and K. Oraee, «An approach towards ascertaining open-pit to underground transition depth,» Journal of Applied Sciences, 8, No. 23 (2008).
30. H. Lerchs and I. F. Grossmann, «Optimum design of open pit mines,» Canadian Institute of Mining Bulletin, 58 (1965).
31. S. Korobov, Methods for Determining Optimal Open Pit Limits, Paper ED-74-R-4 (1974).
32. C. Alford, «Optimization in underground mine design,» in: Proceedings of 25th International APCOM Symposium, Society for Mining, Metallurgy, and Exploration, Inc., Littleton, CO. (1995).


E. L. Chanturia and S. P. Gzogyan*

Mineral-petrographic studies of interaction between sulfide iron minerals and magnetite and its effect on processing characteristics of ferruginous quartzite, Kursk Magnetic Anomaly (KMA), are reported. The ferruginous quartzite classification was developed by the sulfide factor in terms of specific textural and structural features of mineral components to be separated.

Processing of ferruginous quartzite, pyrite, pyrrhotite, magnetite, intergrowth boundary

1. T. Nagata, Rock Magnetism [in Russian], Mir, Moscow (1955).
2. N. P. Yushkin, Mechanical Properties of Minerals [in Russian], Nauka, Leningrad (1971).
3. V. A. Chanturia, Perspectives of Sustainable Development of Mining and Mineral Processing Industries in Russia [in Russian], Ruda Metally, Moscow (2008).

M. V. Ryazantseva and V. I. Bogachev

The present investigation concerns influence of high power nanosecond electromagnetic pulses on thermoelectric properties, conduction and electrode potential of pyrite and arsenopyrite, Darasunskoe deposit. Experimental data obtained are in full compliance with classical concepts on interrelation between electrochemical and flotation properties of minerals.

Pyrite, arsenopyrite, high-power nanosecond electromagnetic pulses, thermal electromotive force, electrode potential

1. G. A. Mesyats, Pulsed Energy Physics and Electronics [in Russian], Nauka, Moscow (2004).
2. A. N. Didenko, UHF-Energy Physics: Theory and Practice [in Russian], Nauka, Moscow (2003).
3. V. A. Chanturia, Yu. V. Gulyaev, V. D. Lunin, et al., «Disintegration of rebellious gold-bearing ores by high-power electromagnetic pulses,» DAN, 366, No. 5 (1999).
4. N. M. Can and I. Bayraktar, «Effect of microwave treatment on the flotation and magnetic separation properties of pyrite, chalcopyrite, galena and sphalerite,» Minerals and Metallurgical Processing, 23, No. 3 (2007).
5. M. N. Levin, A. V. Tatarintsev, O. A. Kostsova, and A. M. Kostsov, «Activation of semiconductor surface by pulsed magnetic field,» Zh. Tekh. Fiz., No. 10 (2003).
6. V. A. Chanturia, I. Zh. Bunin, V. D. Lunin, et al., «Use of high-power electromagnetic pulses in processes of disintegration and opening rebellious gold-containing raw material,» Journal of Mining Science, No. 4 (2001).
7. I. Zh. Bunin, N. S. Bunina, V. A. Vdovin, et al., «Experimental studies of non-thermal effect of high-power electromagnetic pulses on rebellious gold-bearing materials,» Izv. AN, Ser. «Physics,» 65, No. 12 (2001).
8. А. S. Izotov and V. I. Rostovtsev, «Influence of radiation action on opening of mineral concentrations of rebellious ores,» Journal of Mining Science, No. 2 (2003).
9. R. Sh. Shafeev, V. A. Chanturia, and V. P. Yakushin, Ionizing Radiation Effect in Flotation [in Russian], Nauka, Moscow (1973).
10. V. A. Chanturia, K. N. Trubetskoi, S. D. Viktorov, I. Zh. Bunin, et al., Nanoparticles in Failure and Disintegration of Geomaterials [in Russian], IPKON RAN, Moscow (2006).
11. K. E. Haque, «Microwave energy for mineral treatment processes — a brief review,» Int. J. Miner. Process., 57 (1999).
12. V. A. Chanturia and I. Zh. Bunin, «Non-traditional high-energy processes for disintegration and exposure of finely dispersed mineral complexes,» Journal of Mining Science, No. 3 (2007).
13. I. Zh. Bunin, T. A. Ivanova, and V. D. Lunin, «Influence of high-energy effects on dissolving of gold-bearing minerals,» Gorny Inform.-Analit. Byull., No. 8 (2002).
14. V. A. Chanturia, I. V. Philippova, L. O. Philippov, et al., «Effect of powerful nanosecond electromagnetic impulses on surface and flotation properties of carbonate-bearing pyrite and arsenopyrite,» Journal of Mining Science, No. 5 (2008).
15. V. A. Chanturia and R. Sh. Shafeev, Chemistry of Surface Phenomena in Flotation [in Russian], Nedra, Moscow (1977).
16. V. A. Chanturia, «Studies of role of energy state of minerals and redox properties of an aqueous phase in flotation,» Thesis of Ph.D. [in Russian], Moscow (1974).
17. V. A. Chanturia and V. E. Vigdergauz, Electrochemistry of Sulfides: Theory and Practice of Flotation [in Russian], Nauka, Moscow (1993).

L. V. Shumilova

The paper illustrates that the photo-electrochemical pre-treatment of a reagent solution improves the disintegration of a mineral matrix in its following bio-oxidation and the recovery of dispersed gold from the sulfide ores. The laboratory testing of the combined oxidation procedure and the small-scale commercial practice of the electroactivation sorption leaching with the aim to recover dispersed gold from the Koktapas deposit sulfide ores resulted in the 23 % higher recovery of gold.

Dispersed gold, physicochemical and bio-oxidation, polyreagent schemes, electrochemical and photochemical processes

1. V. A. Chanturia, «Contemporary issues of mineral beneficiation in Russia,» Gorny Zh., No. 12 (2005).
2. V. V. Lodeishchikov, Procedure for the Recovery of Gold and Silver from the Rebellious Ores [in Russian], Irgiredmet, Irkutsk (1999).
3. V. A. Chanturia and G. V. Sedel’nikova, «Development of mining and processing of gold-bearing ores and placers,» Gorny Zh., No. 5 (1998).
4. M. I. Fazlullin, A. A. Machinsky, R. N. Smirnova, et al., «A practice of heap leaching of gold at Delmachik deposit,» Tsvet. Metally, No. 8 (2002).
5. A. G. Sekisov, N. V. Zykov, and V. S. Korolev, Dispersed Gold. Aspects of the Geology and Technology [in Russian], ChitGTU, Chita (2007).
6. A. G. Sekisov, Yu. N. Reznik, L. V. Shumilova, et al., «Russian Federation Patent No. 2361937. The method of preparation of the rebellious sulfide ores and concentrates to leaching,» Byull. Izobret., No. 3 (2009).
7. A. G. Sekisov, Yu. N. Reznik, N. V. Zykov, L. V. Shumilova, et al., «Russian Federation Patent No. 23506652350665. The method of bath-heap metal leaching from a mineral mass,» Byull. Izobret., No. 9 (2007).


A. N. Anushenkov, V. I. Rostovtsev, and V. K. Frizorger*

A new process for modification of coal tar pitch is proposed. The time of modification is reduced to 1 hour as compared to 8 hours in the conventional process. The consideration of mechanism of the modifications in structure and properties of pitch under hydropercussion-cavitation treatment is focused on expanding its application scope with a view of manufacture of electrodes.

Coal tar pitch, hydropercussion-cavitation treatment, activation mechanism, thermal and other characteristics

1. Raymond C. Perruchoud, Markus W. Meier, and Werner Fisher, «Worldwide pitch quality for prebaked anodes,» Light Metals (2003).
2. Trygve Eidet, Alf Yngve Guldhav, Atle Olsvik, and Morten Sorlie, «PAH emissions from Soderberg anodes with standard and PAH reduced binder pitches,» Light Metals (2004).
3. Amir A. Mirchi, Andre L. Proulx, Gabi Savard, Emile Simard, et al., Light Metals, 2002.
4. V. K. Frizorger, A. N. Anushenkov, and S. A. Khramenko, «Russian Federation patent No. 2317849. Hydropercussion-cavitation dispersing facility to produce carbo-carbon compositions. Part II,» Byull. Izobret., No. 6 (2008).
5. V. K. Frizorger, A. N. Anushenkov, and S. A. Khramenko, «Russian Federation Patent No. 2288938. Process for production of pitch binding for electrode materials. Part I,» Byull. Izobret., No. 34 (2006).
6. V. E. Privalov and V. D. Stepanenko, Coal Tar Pitch [in Russian], Metallurgia, Moscow (1975).
7. Winfried Boenigk, Gord H. Gilmet, and Dirk Schnitzler, Light Metals (2002).
8. O. F. Sidorov, «Modern concepts on thermal oxydation of coal tar pitches. Part III: Influence of oxidation conditions on character of thermochemical transformations and pitch structure,» Koks Khimia, No. 6 (2004).
9. A. S. Fialkov, Carbon: Interlayer Compounds and Carbon-Based Composites [in Russian], Aspect Press, Moscow (1997).
10. V. I. Denisenko, A. N. Chistyakov, M. V. Vinogradov, and M. L. Itskov, «Complex thermographic investigation into coal tar pitches,» Khim. Tverd. Topl., No. 3 (1984).

Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2019. Информация о сайте