Rambler's Top100
Институт горного дела СО РАН
 Чинакал Николай Андреевич Лаборатория механики деформируемого твердого тела и сыпучих сред Кольцевые пневмоударные машины для забивания в грунт стержней Лаборатория механизации горных работ
ИГД » Издательская деятельность » Журнал «Физико-технические проблемы… » Номера журнала » Номера журнала за 2009 год » JMS, Vol. 45, No. 6, 2009

JMS, Vol. 45, No. 6, 2009


A. A. Baryakh, E. P. Rusin, S. B. Stazhevsky, A. K. Fedoseev, and G. N. Khan

Numerical modeling data on evolution of the stress-strain state of a rock mass containing a karst cavity are reported.

Rock mass, karstogenesis, discrete element method, stress-strain state

1. P. Williams and T. F. Yin, World Map of Carbonate Rock Outcrops, Version 3.0, Geography and Environmental Science, University of Auckland, http://www.sges.auckland.ac.nz/sges_research/karst.shtm, Aug. 27 (2009).
2. G. A. Maksimovich, «Fundamentals of karsts science,» in: Aspects of Karst Morphology, Speleology and Karst Hydrogeology [in Russian], 1, Perm Knizh. Izd., Perm (1963).
3. K. A. Gorbunova, V. N. Andreichuk, V. P. Kostarev, and N. G. Maksimovich, Karst and Caves of the Perm Region [in Russian], Izd. Perm Univers., Perm (1992).
4. G. Veni, H. DuChene, N. C. Crawford, C. G. Groves, G. H. Huppert, E. H. Kastning, R. Olson, and B. J. Wheeler, Living with Karst: a Fragile Foundation, Environmental Awareness Series, American Geological Institute (2001).
5. M. Parise and J. Gunn, «Natural and anthropogenic hazards in karst areas,» Natural Hazards and Earth System Sciences, Special Issue, No. 23 (2004).
6. W. E. Davies, J. H. Simpson, G. C. Ohlmacher, W. S. Kirk, and E. G. Newton, Engineering Aspects of Karst. Map, U. S. Geological Survey National Atlas of the United States of America, Scale 1:7,500,000, Reston, Va (1984).
7. S. V. Al’bov, «Interpretation of the origin of sink and subsidence origin in terms of the theory of rock pressure with the use of the karst information for the Oka left-shore lower reaches,» Karstoved., No. 4 (1948).
8. T. M. Tharp, «Cover-collapse sinkhole formation and soil plasticity,» Sinkholes and the Engineering and Environmental Impacts of Karst, Geotechnical Special Pub., ASCE, B. F. Beck (Ed.), No. 122 (2003).
9. C. E. Augarde, A. V. Lyamin, and S. W. Sloan, «Prediction of undrained sinkhole collapse,» J. Geotechnical and Geoenvironmental Engineering, 129, No. 3 (2003).
10. Eui-Seob Park, Sung-Oong Choi, and Hee-Soon Shin, «Simulation of the ground subsidence mechanism using a PFC2D,» Proc. Alaska Rocks 2005, The 40th U. S. Symposium on Rock Mechanics (USRMS), Anchorage, American Rock Mechanics Association, AK, USA (2005).
11. M. Caudron, F. Emeriault, R. Kastner, and M. Al. Heib, «Collapses of underground cavities and soil-structure interactions: Experimental and numerical models,» in: Proc. the First Euro-Mediterranean Symposium on Advances in Geomaterials and Structures, F. Darve, L. Doghri, R. El Fatmi, H. Hassis, and H. Zenzri (Eds.), Hammamet, Tunisia, LGC-ENIT, Tunisia (2006).
12. Itasca: Software: Particle Flow Code in Two Dimensions, http://www.itascacg.com/pfc2d/.
13. P. A. Cundall and O. D. L. Strack, «A discrete numerical model for granular assemblies,» Geotechnique, 29 (1979).
14. H. T. Alassi, L. Li, and R. M. Holt, «Discrete element modeling of stress and strain evolution within and outside a depleting reservoir,» Pure and Applied Geophysics (2006).
15. G. N. Khan, «On unsymmetrical regime of rock mass failure in the vicinity of a cavern,» Phys. Mezomekh., 11, No. 1 (2008).
16. A. A. Baryakh, S. B. Stazhevsky, E. A. Timofeev, and G. N. Khan, «Strain state of a rock mass above karst cavities,» Journal of Mining Science, No. 6 (2008).
17. Monitoring of Exogenous Geological Processes in the Territory of the Perm Region [in Russian], GI UR. O. RAN, Perm (2005).
18. E. P. Dorofeev, «Relationship between size of cave-in pits and karst caverns in sulphatized rocks,» in: Karst Science Aspects [in Russian], Issue II, Perm (1970).
19. D. C. Ford and P. Williams, Karst Hydrogeology and Geomorphology, John Wiley and Sons (2007).

L. A. Nazarov, L. A. Nazarova, and A. I. Artemova*

The paper offers a procedure of creating equivalent models of inhomogeneous, viscoelastic and block rock masses based on the probabilistic approach and concept of physical volume of an inhomogeneous medium. The numerical experiments on representative structures of rock masses have shown a good correspondence between the results obtained with the accurate and equivalent models.

Rock mass, equivalent model, discontinuity, viscoelasticity, finite element method

1. M. A. Sadovsky, L. G. Bolkhovitinov, and V. F. Pisarenko, Deformation of a Medium and the Seismic Process [in Russian], Nauka, Moscow (1987).
2. R. E. Goodman, R. L. Taylor, and T. L. Brekke, «A model for the mechanics of jointed rock,» J. Soil Mech. and Found. Div. Proc. Amer. Soc. Civ. Eng., 94 (1968).
3. R. E. Goodman, Methods of Geological Engineering in Discontinuous Rocks, St. Paul, West Publish Comp. (1976).
4. С. М. Gerrard, «Equivalent elastic moduli of a rock mass consisting of orthorhombic layers,» Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr., 19, No. 1 (1982).
5. A. F. Fossum, «Effective elastic properties for a randomly jointed rock mass,» Int. J. of Rock Mech. Min. Sci. & Geomech. Abstr. 22 (1985).
6. M. D. G. Salamon, «Elastic moduli of a stratified rock mass,» Int. J. Rock of Mech. & Mining Science, 5 (1968).
7. T. Kawamoto, et al., «Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory,» Int. J. Numer. Analyt. Meth. Geomech., Nо. 12 (1988).
8. G-H. Shi, «Modeling rock joints and blocks by manifold method,» in: Proceedings of the 33rd US Symposium on Rock Mechanics, Santa Fe, Mexico (1992).
9. Jeen-Shang Lin and Cheng-Yu Ku, «Two-scale modeling of jointed rock masses,» Int. J. of Rock Mech. & Mining Science, 43, No. 3 (2006).
10. L. A. Nazarova, «Stress state of a sloping-bedded rock mass around a working,» Journal of Mining Science, No. 2 (1985).
11. A. A. Baryakh, S. A. Konstantinova, and V. A. Asanov, Salt Rock Deformation [in Russian], UrO RAN, Ekaterinburg (1996).
12. Y. Ben-Zion and C. G. Sammis, «Characterization of fault zones,» Pure and Applied Geophysics, 160 (2003).
13. L. A. Nazarov, «Wave propagation in fine-layered media,» Dokl. Akad. Nauk, 307, No. 4 (1989).
14. L. A. Nazarov and L. A. Nazarova, «Connection between the deformation properties of rock joints and their fractal dimension,» Journal of Mining Science, No. 5 (2008).
15. S. A. Yufin, «Mechanical processes in a rock mass and their interaction with underground structures,» Dr.Tech.Sci. Thesis [in Russian], Nauka, Moscow (1991).
16. M. V. Kurlenya, V. N. Oparin, and A. A. Eremenko, «Relation of linear block dimensions of rocks to crack opening in the structural hierarchy of masses,» Journal of Mining Science, No. 3 (1993).

S. V. Vil’yaminov, A. S. Voznesensky, V. V. Nabatov, and V. L. Shkuratnik

The regularities and mechanisms of acoustic emission in gypseous rocks under heating are considered. Experimental data are interpreted by the thermal gravimetrical and differential thermal analyses. The applicability of thermoacoustic effects to identifying gypseous rocks and evaluating percentage of different minerals in them is verified.

Rocks, thermoacoustic emission, mineral composition, phase transformations, thermal gravimetric analysis, differential thermal analysis

1. A. V. Lavrov and V. L. Shkuratnik, «Acoustic emission in rock deformation and failure,» Acoust. J., 51 (2005).
2. A. S. Voznesensky and M. N. Tavostin, «Acoustic emission of coal in the post-limit deformation state,» Journal of Mining Science, No. 4 (2005).
3. V. L. Shkuratnik, Yu. L. Filimonov, and S. V. Kuchurin, «Regularities of acoustic emission in coal samples under triaxial compression,» Journal of Mining Science, No. 1 (2005).
4. R. Prikryl, T. Locajič, C. Li, and V. Rudajev, «Acoustic emission characteristics and failure of uniaxially stressed granite rocks: the effect of rock fabric,» Rock Mechanics and Rock Engineering, 36, No. 4 (2003).
5. Y. Filimonov, A. Lavrov, Y. Shafarenko, and V. Shkuratnik. «Observation of post failure Kaiser effect in a plastic rock,» Pure and Applied Geophysics, 159, No. 6 (2002).
6. A. S. Voznesensky and M. N. Tavostin, and Yu. V. Demchishin, «Effect in change of time of acoustic emission attenuation in rock salt when subjected to the maximum compaction,» Journal of Mining Science, No. 1 (2002).
7. B. J. Pestman and J. G. Van Munster, «An acoustic emission study of damage development and stress memory effects in sandstone,» Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 33, No. 61 (1996).
8. V. A. Vinnikov and V. L. Shkuratnik, «On theoretical model of thermoemission memory effect in rocks,» Prikl. Mekh. Tekh. Fiz., No. 2 (2008).
9. V. L. Shkuratnik, S. V. Kuchurin, and V. A. Vinnikov, «Regularities of acoustic emission and thermoemission memory effect in coal specimens under varying thermal conditions,» Journal of Mining Science, No. 4 (2007).
10. Ch. Yong and Ch. Wang, «Thermally induced acoustic emission in Westerly granite,» Geoph. Res. Lett., 7, No. 12 (1980).
11. B. Zogala, W. M. Zuberek, and A. Goroskiewicz, «Acoustic emission in Carboniferous sandstone and mudstone subjected to cyclic heating,» in: Mining Induced Seismicity, Acta Montana, Series A, 2, No. 3 (1992).
12. M. Seto, V. S. Vutukuri, and D. K. Nag, «Possibility of estimating in-situ stress of virgin coal field using acoustic emission technique, rock stress,» Proc. Symposium on Rock Stress, K. Sugawara & Y. Obara (Eds.), A. A. Balkema, Rotterdam (1997).
13. G. Manthei, J. Eisenblaetter, and K. Salzer, «Acoustic emission studies on thermally and mechanically induced cracking in salt rock, Acoustic emission/micrоseismic activity in geologic structures and materials,» Jr. Series on Rock and Soil Mechanics, 21, Clausthal-Zellerfeld: Trans Tech Publications (1998).
14. A. S. Voznesensky, V. L. Shkuratnik, S. V. Vil’yaminov, and V. A. Vinnikov, «Test stand for investigation into acoustic-emission of rocks under heating,» Gorn. Inform.-Analit. Byull., No. 12 (2007).
15. T. V. Fursa, E. P. Naiden, K. Yu. Osipov, and R. U. Usmanov, «Specific features of mechanoelectrical transformations in dielectrics in terms of structural phase transformations,» Zh. Tekh. Fiz., 74, Issue 12 (2004).
16. S. V. Kuchurin, V. L. Shkuratnik, and V. A. Vinnikov, «Regularities of influence of disturbances on thermal emission memory in coal specimens,» Journal of Mining Science, No. 2 (2008).
17. V. A. Greshnikov and Yu. B. Drobot, Acoustic Emission. Application to Test Materials and Products [in Russian], Izd. Standart, Moscow (1976).
18. V. T. Trofimov, Ground Science [in Russian], Izd. MGU, Moscow (2005).

A. M. Kovrizhnykh

The paper describes an approach to finding the maximum and minimum destruction time of an open or underground structural element under creep in the case of the plane-strain state of a rock mass, by an inelastic creep model. Using the elastic creep model, the author is solving problems on deformation and failure of a cylindrical excavation and a spherical cavity under the action of hydrostatic rock pressure. The times of the failure origin and of the complete failure of structural elements under the long-term stress have been determined.

Creep, plasticity, long-term strength criterion, failure, rock, excavation

1. B. D. Annin and V. M. Zhigalkin, Material Behavior under the Combined Stress [in Russian], SO RAN, Novosibirsk (1999).
2. N. S. Bulychev, Mechanics of Underground Structures: Examples and Problems [in Russian], Nedra, Moscow (1989).
3. Yu. N. Rabotnov, Creep of Structural Elements [in Russian], Nauka, Moscow (1966).
4. L. M. Kachanov, Theory of Creep [in Russian], Gos. Izd. Fiz.-Mat. Lit., Moscow (1960).
5. L. M. Kachanov, Basics of the Theory of Creep [in Russian], Nauka, Moscow (1969).
6. V. V. Sokolovsky, Theory of Plasticity [in Russian], Vyssh. Shk., Moscow (1969).
7. A. M. Lokoshenko, V. V. Nazarov, D. O. Platonov, and S. A. Shesterikov, «Analyzing criteria of long-term strength in metals under combined stress,» Izv. AN SSSR, Mekh. Tverd. Tela, No. 2 (2003).
8. Zh. S. Erzhanov, Theory of Creep in Rocks and Its Applications [in Russian], Nauka, Alma-Ata (1964).
9. Zh. S. Erzhanov and E. I. Bergman, Salt Rock Creep [in Russian], Nauka, Kazakh. SSR, Alma-Ata (1977).
10. S. S. Vyalov, Rheology Foundations for Soil Mechanics [in Russian], Nauka, Moscow (1978).
11. A. M. Kovrizhnykh, «Long-term strength of metals and the ideal plasticity models,» Dokl. RAN, 415, No. 1 (2007).
12. A. M. Kovrizhnykh, «Long-term strength and limit state of metals under creep,» Izv. RAN, Mekh. Tverd. Tela, No. 2 (2009).
13. Yu. V. Nemirovsky, A. V. Mishchenko, and I. T. Vokhmyanin, Rational and Optimized Design of Laminated Rod Structures [in Russian], NGASU, Novosibirsk (2004).
14. Yu. V. Nemirovsky, «Including weight in structural designs under creep,» Izv. AN SSSR, Mekh. Tverd. Tela, No. 4 (1970).
15. O. V. Sosnin and I. V. Lyubashevskaya, «Rough estimates of high-temperature creep in structural elements,» Prikl. Mekh. Tekh. Fiz., No. 6 (2001).
16. D. C. Drucker and W. Prager, «Soil mechanics and plastic analysis or limit design,» Quarterly of Applied Mathematics, 10, No. 2 (1952).
17. A. M. Kovrizhnykh, «Limit stresses and strains around an unsupported mine working,» Journal of Mining Science, No. 2 (1984).
18. A. M. Kovrizhnykh, «A version of the plastic yield theory based on the shear deformation,» Prikl. Mekh. Tekh. Fiz., No. 6 (1982).


V. N. Oparin and A. S. Tanaino

The paper presents canonical ranking of natural structural units in rocks by sizes from 1·10-3 to 4·103 mm depending on the geo-structure hierarchy level. Based on this ranking, the authors constructed classifications of main genotypes of rocks.

Structural unit, jointing, rock block-like structure, graininess, canonical ranking, classifications of rock genotypes by structural unit sizes

1. Glossary on Geology [in Russian], Nedra, Moscow (1978).
2. Russian Federation State Standards R 50544–93. Rocks. Terminology and Definition [in Russian], Gosstandart Rossii, Moscow (1993).
3. V. Ryka and A. Malishevskaya, Petrography Glossary [in Russian], Nedra, Moscow (1989).
4. M. Yu. Povarennykh, «Establishing a new property of rocks, a hidden texture,» Dokl. Akad. Nauk, 419, No. 2 (2008).
5. M. Yu. Povarennykh, «Frustumation (fragmentation, lumpiness, «elementary cell» formation) — the first time revealed property of rocks,» in: The 4th International Mineralogy Workshop Proceedings «Theory, History, Philosophy and Practice of Mineralogy» [in Russian], Syktyvkar (2006).
6. M. Yu. Povarennykh, Rock Frustumation (Primary Lumpiness, Aggregation Ability) and Its Effect on Crushability and Large-Lump Treatment of Alkaline Granites and Carbonatite [in Russian], www/geo.web.ru/conf/…/index 48/ html.
7. I. S. Delitsin, Structure Formation in Quartz Rocks [in Russian], Nauka, Moscow (1985).
8. I. S. Delitsin, «Elementary cell and the self-organization mechanism in rocks,» in: Evolution in Geology: Substance and Structure [in Russian], Novosibirsk (1990).
9. Yu. I. Polovinkina, Structure and Texture of Effusive and Metamorphic Rocks. Part I: Glossary [in Russian], Nedra, Moscow (1966).
10. Great Soviet Encyclopedia [in Russian], Sov. Entsik., Moscow (1969 — 1978).
11. A. P. Evgen’ev (Ed.), Russian Dictionary [in Russian], Russ. Yazyk, Moscow (1981).
12. F. J. Pettijophn, Sedimentary Rocks, 3rd Edition, Harper & Row (1975).
13. M. A. Sadovsky, «Natural lumpiness of rocks,» Dokl. Akad. Nauk SSSR, 247, No. 4 (1979).
14. M. A. Sadovsky, L. G. Bolkhovitinov, and V. F. Pisarenko, «Discrete properties of rocks,» Preprint [in Russian], AN SSR IFZ, Moscow (1981).
15. M. A. Sadovsky, Geophysics and Physics of Explosion. Selectas [in Russian], Nauka, Moscow (1999).
16. Vasubandhy, Abhidharmakosa Bhasya. Thesaurus of Buddhistic Canonical Philosophy [Russian translation], Volume 2, Section III, Ladomir, Moscow (2001).
17. E. I. Shemyakin, G. L. Fisenko, M. V. Kurlenya, et al., «Phenomenon of zonal disintegration of rocks around underground excavations,» Dokl. AN SSSR, 289, No. 5 (1986).
18. V. N. Oparin and M. V. Kurlenya, «Gutenberg velocity section of the Earth and its possible geomechanical explanation. Part I: Zonal disintegration and the hierarchical series of geoblocks,» Journal of Mining Science, No. 2 (1994).
19. V. N. Oparin and M. V. Kurlenya, «Gutenberg velocity section of the Earth and its possible geomechanical explanation. Part II: Physical bases of geocycles of a different scale level,» Journal of Mining Science, No. 3 (1994).
20. V. N. Oparin and M. V. Kurlenya, «Gutenberg velocity section of the Earth and its possible geomechanical explanation. Part III: Conjugated series of georythms and natural catastrophes,» Journal of Mining Science, No. 4 (1994).
21. V. N. Oparin and M. V. Kurlenya, «Gutenberg velocity section of the Earth and its possible geomechanical explanation. Part IV: Geomechanics and geotectonics,» Journal of Mining Science, No. 6 (1994).
22. V. N. Oparin, «Scale factor of the phenomenon of zonal disintegration of rocks and stratification of the Lunar interior from seismic data,» Journal of Mining Science, No. 6 (1997).
23. V. N. Oparin, A. P. Tapsiev, M. A. Rozenbaum, et al., Zonal Disintegration of Rocks and the Stability of Underground Excavations [in Russia], Izd. SO RAN, Novosibirsk (2008).
24. V. N. Oparin, V. F. Yushkin, A. A. Akinin, et al., «A new scale of hierarchically structured representations as a characteristic for ranking entities in a geomedium,» Journal of Mining Science, No. 5 (1998).
25. V. N. Oparin, A. S. Tanaino, and V. F. Yushkin, «Discrete properties of entities of a geomedium and their canonical representation,» Journal of Mining Science, No. 3 (2007).
26. V. N. Oparin and A. S. Tanaino, «Assessment of abrasivity by physico-mechanical properties of rocks,» Journal of Mining Science, No. 3 (2009).
27. M. I. Solodukhin and I. V. Arkhangel’sky, GeoTechnician Manual for Geotechnic and Hydrology Survey [in Russian], Nedra, Moscow (1982).
28. N. G. Bochkarev, Basic Interstellar Medium Physics [in Russian], MGU, Moscow (1991).
29. http//www. dic. academic. ru.
30. N. V. Koronovsky and A. F. Yakusheva, Basic Geology [in Russian], MGU, Moscow (1991).
31. K. N. Trubetskoy, M. G. Potapov, K. E. Vinnitsky, et al., Guideline on Open Mining [in Russian], Gorn. Byuro, Moscow (1994).
32. A. V. Biryukov, V. I. Kuznetsov, and A. S. Tashkinov, Statistical Models for Mining Industry [in Russian], Kuzbassvuzizdat, Kemerovo (1996).
33. Technical Regulations for Blasting in Power-Generating Construction. Approved by: Ministry of Fuel and Energy, Ministry of Atomic Energy, Russia [in Russian], Moscow (1997).
34. M. B. Etkin and A. E. Azarkovich, Blasting in Power-Generating and Industrial Construction. Scientific and Practical Guidance [in Russian], MHU, Moscow (2004).
35. S. D. Viktorov, A. A. Eremenko, V. M. Zakalinsky, et al., Large-Scale Blasting Technology for Rockburst-Hazardous Ore Deposits in Siberia [in Russian], Nauka, Novosibirsk (2005).
36. M. V. Rats and S. N. Chernyshev, Jointing and Properties of Jointy Rocks [in Russian], Nedra, Moscow (1970).
37. Construction Rules 484–76. Engineering Survey Manual for Excavations Meant for Economics Object Accommodation [in Russian], Gosstroi SSSR, Moscow (1976).

E. N. Sher and A. G. Chernikov

The authors report measurement data on seismic waves in bulk blasting at quarries by using new high-precise electronic and pyrotechnic blasting systems. It is proved that both systems are efficient, intensity of seismic waves is much lower in large-scale bulk blasting. The authors implemented numerical modeling of seismic wave propagation under a short-delay bulk blast at a quarry. Influence of the blast delay parameters and their precision on the maximum level of seismic vibrations has been studied, and their optimal ranges have been established.

Bulk blasting, seismic waves, short-delay blasting, electronic blasting system, pyrotechnic blasting system

1. V. K. Sovmen, I. K. Chunuev, and B. V. Ekvist, «Mitigation of seismic impact of bulk blasting by employing nonelectric blast initiation systems,» Gorny Zh., No. 9 (2006).
2. V. K. Sovmen and B. V. Ekvist, «Calculation procedure for delay intervals in bulk blasting with employing nonelectric blast initiation systems,» Gorny Zh., No. 8 (2006).
3. B. N. Kutuzov, B. V. Ekvist, and P. A. Bragin, «Data on industrial tests of electric detonators with electronic delay,» Vzryv. Delo, No. 101/58 (2009).
4. G. Mogi, T. Hoshino, and S-Q. Kou, «Reduction of blast vibration by means of sequentially optimized delay blasting,» in: Proc. 1st World Conference on Explosives and Blasting Techniques «Explosives and Blasting Technique», Munich, Germany (2000).
5. S. V. Medvedev, Seismicity of Rock Blasting [in Russian], Nedra, Moscow (1957).

V. P. Efimov

The paper discusses the test data obtained in the three-point and four-point bending under uniaxial tension and in the Brazilian test of some rock types.

Strength, tension, bending, Brazilian tension test

1. R. Lermit, Problems of Concrete Technology [in Russian], Gosstroiizdat, Moscow (1959).
2. L. P. Trapezdnikov, Temperature Crack Resistance in Massive Concrete Structures [in Russian], Energoatomizdat, Moscow (1986).
3. L. Obert, «Brittle fracture in rocks,» in: Fracture. An Advanced Treatise, 7, Academic, New York (1972).
4. V. D. Harlab and A. S. Kvashnin, «Determination of brittle material tensile strength by Carneiro’s test,» in: Studies of Building Materials and Structures Mechanics [in Russian], Saint Petersburg (2000).
5. G. Srouley, «Plane strain fracture toughness,» in: Failure [in Russian], 4, Mashinostroenie, Moscow (1977).
6. G. G. Zaitsev, V. N. Barabanov, and N. S. Laukhtina, «Determination of graphite strength limit by the compression of cylindrical samples in the generatrix line,» in: Structural Graphite-Based Materials. Collected Works [in Russian], 6, Metallurgia, Moscow (1971).
7. V. V. Stol’nikov, Hydraulic Concrete [in Russian], Gosenergoizdat, Moscow — Leningrad (1962).
8. W. F. Brace, «Brittle fracture of rock,» in: State of Stress in the Earth’s Crust Conference Proceedings, W. R. Judd (Ed.), pp. 110–178, American Elsevier, New York (1964).
9. M. Wellor and I. Hawkes, «Measurement of tensile strength by diametral compression of disks and annuli,» Eng. Geol., 5 (1971).
10. S. P. Timoshenko, Material Resistance [in Russian], 2, Nauka, Moscow (1965).
11. .M. Freudenthal, «Statistical approach to brittle fracture,» in: Fracture, H. Liebowitz (Ed.), 2, Academic Press, New York (1968).
12. S. V. Suknev and M. D. Novopashin, «Gradient approach to rock strength estimation,» Journal of Mining Science, No. 4 (1999).
13. M. A. Legan, «Relationship of gradient criteria of the local strength in the stress concentration zone with the linear fracture mechanics,» Prikl. Mekh. Tekh. Fiz., No. 4 (1993).
14. V. V. Novozhilov, «Necessary and sufficient criterion of brittle strength,» Prikl. Mat. Mekh., 33, No. 2 (1969).

M. A. Balueva, D. I. Blokhin*, V. L. Savatorova, A. V. Talonov, and V. I. Sheinin*

A model of an elastic medium «specimen» is described. Dissipative elements of the model are presented by isolated closed disk cracks. Movement of the crack edges under varying stress state of the specimen is considered in the context of temperature variations on the specimen surface. The temperature variations in the specimen under uniaxial loading are estimated as functions of the crack radii and crack concentration. Comparison of the estimates with the experimental data makes it possible to conclude that they can be identified by the infrared radiometry methods. It is pointed out that this model is applicable to assessing the structural heterogeneity degree in geomaterials.

Geomaterials, elastic deformation, microcracks, dissipation processes, infrared radiation

1. M. V. Kurlenya, A. G. Vostretsov, G. I. Kulakov, and G. E. Yakovitskaya, Recording and Processing of Electromagnetic Emission Signals in Rocks [in Russian], Izd SO RAN, Novosibirsk (2000).
2. V. L. Shkuratnik, Yu. L. Filimonov, and S. V. Kuchurin, «Experimental investigation into acoustic emission in coal samples under uniaxial loading,» Journal of Mining Science, No. 5 (2004).
3. P. V. Egorov, A. S. Denisov, and S. M. Minaev, Triboluminescent Process for Assessment of Stress State in a Rock Mass. Geophysical Processes for Monitoring Stresses and Strains [in Russian], Izd. IGD SO AN SSSR, Novosibirsk (1985).
4. D. E. Oliver, «Stress pattern analysis by thermal emission,» in: handbook on Experimental Mechanics, A. S. Kobayashi (Ed.), Prentice-Hall (1986).
5. J. M. Dulieu-Barton and P. Stanley, «Development and applications of thermoelastic stress analysis,» Journal of Strain Analysis, 33 (1988).
6. V. I. Sheinin, E. A. Motovilov, and S. V. Filippova, «Estimating the change in the stress state of soils and rocks from the change in the flux intensity of infrared radiation from their surface,» Journal of Mining Science, No. 3 (1994).
7. V. I. Sheinin, B. V. Levin, D. I. Blokhin, and A. V. Favorov, «Identification of nonstationary changes in stress state of geomaterials by infrared radiometry data,» Journal of Mining Science, No. 5 (2003).
8. A. Nadai, Plastic Flow and Fracture in Solids, McGraw-Hill, New York (1950).
9. L. Z. Kriksunov, Fundamentals of Infrared Technique. Handbook [in Russian], Sov. Radio, Moscow (1978).
10. Yu. V. Zhitnikov and B. M. Tulinov, «Calculation of strain properties of solid body, specified by closed jointing under complicated stress state,» Izv. AN SSSR, Mechanics of Solid Body, No. 1 (1984).
11. A. V. Talonov and B. M. Tulinov, «Calculation of elastic characteristics of jointed media under complicated stress state,» Izv. AN SSSR, Mekh. Tverd. Tela, No. 6 (1988).
12. A. N. Tikhonov and A. A. Samarsky, Equations of Mathematical Physics [in Russian], Nauka, Moscow (1977).
13. A. N. Stavrogin and A. G. Protosenya, Rock Strength and the Stability of Deep Underground Workings [in Russian], Nedra, Moscow (1985).


K. N. Trubetskoy, Yu. P. Galchenko, I. I. Ainbinder, and G. V. Sabinyan

The paper describes a geotechnical model of kimberlite pipes and substantiates a new approach to underground extraction of kimberlite pipes using a «framework» geotechnology.

Diamond deposit, kimberlite pipe, «framework» geotechnology, backfill, artificial masses, efficiency, safety

1. A. D. Khar’kin, N. N. Zinchuk, and A. I. Kryuchkov, The World Primary Diamond Deposits [in Russian], Nedra, Moscow (1998).
2. The Presence and Future in the Geology of Diamond. Collected Works [in Russian], VGU, Voronezh (2005).
3. K. M. Petrov (Ed.), Zonal Types of Biomes in Russia: Production-Induced Disturbance and Natural Recovery of the Terrain Ecology [in Russian], SPbGU, Saint-Petersburg (2003).
4. V. N. Rodionov, I. A. Sizov, and V. M. Tsvetkov, Foundations of Geomechanics [in Russian], Nedra, Moscow (1986).
5. K. N. Trubetskoy, Yu. P. Galchenko, N. F. Zamesov, et al., «Production-altered subsurface structure,» Vest. RAN, 72, No. 11 (2002).
6. К. N. Trubetskoy, Yu. P. Galchenko, and G. V. Sabjanin, «Concept of subsurface development of bowels of the Earth on the basis of «Framework» geotechnology,» in: The 21st World Mining Congress Proceedings, Session 15, Poland, Krakow (2008).
7. Yu. P Galchenko, I. I. Ainbinder, G. V. Sabyanin, et al., «A new concept of underground geotechnology,» Gorny Zh., No. 1 (2007).
8. Yu. P Galchenko, I. I. Ainbinder, G. V. Sabyanin, et al., «Russian Federation Patent No. 2306417. The underground mineral mining method,» Byull. Izobret., No. 26 (2007).
9. V. D. Slesarev, Optimized Dimensioning of Various Pillars [in Russian], Ugletekhizdat, Moscow (1948).
10. www.glossary.ru.
11. D. I. Rafienko, A. F. Nazarchik, Yu. P. Galchenko, and L. A. Mansurov, Improvement of the Vein Deposit Development [in Russian], Nauka, Moscow (1988).

N. V. Makaryuk

The paper sets forth the results of the theoretical and experimental research of the low frequency vibroseismic treatment effect on the permeability and metal recovery of an aqueous uranium bearing rock formation. The main vibro-treatment parameters, such that to improve the filtration and production characteristics of the underground metal leaching via wells, are determined.

Uranium-bearing formation, well, underground leaching, bound water, water transmissibility, metal recovery, vibroseis exposure, surface vibro-exciter

1. O. L. Kedrovsky (Ed.), Underground Leaching Systems [in Russian], Nedra, Moscow (1992).
2. V. G. Yazikov, V. L. Zabaznov, N. N. Petrov, et al., Uranium Recovery in Kazakhstan [in Russian], Kazatomprom, Almaty (2001).
3. V. L. Gavrilko and V. S. Alekseev, Well Tube Filters [in Russian], Nedra, Moscow (1985).
4. A. Kh. Mirzadzhanzade, I. M. Akhmetov, and A. G. Kovalev, Oil and Gas Reservoir Physics [in Russian], Nedra, Moscow (1992).
5. I. G. Kissin, Earthquakes and Underground Waters [in Russian], Nauka, Moscow (1982).
6. M. A. Sadovsky, M. T. Abasov, and A. V. Nikolaev, «Prospects of the vibration exposure of an oil reservoir to enhance oil recovery,» Vestn. AN SSSR, No. 9 (1990).
7. V. E. Dontsov, V. V. Kuznetsov, and V. E. Nakoryakov, «Pressure wave propagation in a porous water-saturated medium,» Prikl. Mekh. Tekh. Fiz., No. 1 (1988).
8. N. V. Makaryuk, V. I. Klishin, and S. S. Zolotykh, «Studying the influence of coal formation vibro-sensitivity on methane recovery,» Gorn. Inform.-Analit. Byull., No. 6 (2006).
9. D. I. Skorovarov (Ed.), Uranium Mining Technology Guidelines [in Russian], Energoatomizdat, Moscow (1997).
10. V. M. Maksimov (Ed.), Hydrogeologist Manual [in Russian], Nedra, Leningrad (1979).
11. Yu. I. Tarasevich and F. D. Ovcharenko, Adsorpiton on Clayey Mineral [in Russian], Naukova Dumka, Kiev (1975).
12. A. V. Nikolaev, Nonlinear Seismology Problems [in Russian], Nauka, Moscow (1987).
13. B. V. Deryagin, N. V. Churaev, and V. M. Muller, Surface Forces [in Russian], Nauka, Moscow (1985).
14. I. V. Popov (Ed.), Modern Concepts on Bound Waters in Rocks [in Russian], AN SSSR Izd., Moscow (1963).
15. I. S. Chichinin, Vibroseismic Emission [in Russian], Nedra, Moscow (1984).
16. M. B. Shneerson and V. V. Maiorov, Surface Non-Explosive Seismic Exploration [in Russian], Nedra, Moscow (1988).
17. V. M. Seimov, A. N. Trofimchuk, and O. A. Savitsky, Oscillations and Waves in the Stratified Media [in Russian], Naukova Dumka, Kiev (1990).
18. V. K. Khmelevsky (Ed.), Geophysical Research Methods [in Russian], Nedra, Moscow (1988).
19. I. I. Klyukin, Noise and Sound Vibration Control at Water-Crafts [in Russian], Sudpromizdat, Leningrad (1969).
20. «Surface mobile vibroseismic system,» in: The Russian Academy of Sciences Report 2003: Resume [in Russian], Nauka, Moscow (2004).
21. B. V. Borovsky, B. G. Samsonov, and L. S. Yazvin, Determination Procedure for the Aqueous Horizon Parameters by Pumping-Out Data [in Russian], Nedra, Moscow (1979).

Daniele Peila and Sebastiano Pelizza

The negative consequences on TBM performances caused by an insufficiently complete and detailed «geo» characterization of the rock masses that have to be bored are discussed in the paper taking into account the possible ground probing operations in a TBM bored tunnel and the ground treatment techniques to be carried out ahead of the face that can be applied to make the construction of a bored tunnel feasible when limiting or prohibitive conditions for a TBM, must be faced. A description of some relevant and inspiring projects of TBM bored tunnels in rock where ground probing and treatments were used are also presented and discussed.tic approach and concept of physical volume of an inhomogenous medium. The numerical experiments on representative structures of rock masses have shown a good correspondence between the results obtained with the accurate and equivalent models.

Rock, TBM, mechanized tunnelling, rock mechanics, probing

1. S. Pelizza and P. Grasso, «Tunnel collapses: are they unavoidable?» World Tunnelling (1998).
2. S. Pelizza, «Long TBM drives in rock formation,» Seminar on Design, Construction, Operation and Other Aspects of Tunnels, Malaysia (2000).
3. D. Peila, «Indagini preliminari nella costruzione di galleries: analisi della letteratura tecnica,» Geoingegneria Ambientale a Mineraria, 127 (2009).
4. H. H. Einstein, «Risk and risk analysis in rock engineering,» Tunnelling and Underground Space Technology, 11 (1996).
5. British Tunnelling Society, Tunnel Lining Design Guide, Thomas Telford, London (2004).
6. ITA/AITES WG on General Approaches to the Design of Tunnels, «Guidelines for the design of tunnels,» Tunnelling and Underground Space Technology, 3 (1988).
7. ITA/AITES WG 17, Long Tunnel at Great Depth Final Report, ITA/AITES, Lausanne (2003).
8. ITA/AITES WG 2, «Guidelines for tunnelling risk management,» Tunnel and Underground Space Technology, 19 (2004).
9. H. Parker, «Geotechnical Investigations,» Tunnel Engineering Handbook, Kluwer Pub., Boston (1996).
10. S. Pelizza, «Selection of TBMs,» Workshop on Selection of Tunnelling Methods, World Tunnel Congress 98, Sao Paulo, Brazil (1998).
11. S. Pelizza and D. Peila, «Soil and rock reinforcements in tunnelling,» Tunnelling and Underground Space Technology, 3 (1993).
12. ITA/AITES WG 14, Recommendations and Guidelines for Tunnel Boring Machine, Lausanne (2000).
13. S. Pelizza, «Engineering risk in tunnelling,» Underground Construction in Germany, Ed. STUVA (2000).
14. S. Pelizza and D. Peila, «Rock TBM tunnelling,» Jubilee Volume in Celebration of 75th Anniversary of K. Terzaghi’s «Erdbaumechanik», Technische Universitat Wien (2001).
15. G.Barla and S. Pelizza, «TBM tunnelling in difficult ground conditions,» GeoEng2000, Melbourne (2000).
16. A. Fruguglietti, V. Guglielmetti, P. Grasso, G. Carrieri, and S. Xu, «Selection of the right TBM to excavate weathered rocks and soils,» ITA World Tunnel Congress ’99 Challenges for the 21st Century, Oslo (1999).
17. G. S. Kalamaras, «A probabilistic approach to rock engineering design: application to tunnelling,» Milestones in Rock Engineering-The Bieniawski Jubilee Collection, Balkema (1996).
18. S. Pelizza, «Position Paper No. 3, Ground Treatment.» IV UN-ITA Workshop Gibraltar Strait Crossing, Madrid (2005).
19. E. Chiriotti, P. Grasso, and S Xu, «Analysis of tunnelling risks: state-of-the-art and examples,» Gallerie e Grandi Opere Sotterranee, 69 (2003).
20. K. Kovari, «Safety Systems in Urban Tunnelling — The Zimmerberg Tunnel,» Int. Congress on Mechanized Tunnelling Challenging Case Histories, GEAM/SIG, Torino (2004).
21. C. Oggeri, «Relevant features for tunnelling control by quality procedures,» Gallerie e Grandi Opere Sotterranee, 73 (2004).
22. USNC/TT, «Geotechnical site investigations for underground projects,» National Research Council, Washington (1984).
23. N. Barton, TBM Tunnelling in Jointed and Faulted Rock, Balkema, Rotterdam (2000).
24. J. McFeat-Smith and M. Concilia, «Investigation, prediction and management of TBM performance in adverse geological conditions,» Gallerie e Grandi Opere in Sotterranee, 62 (2000).
25. R. Grandori, «Avanzamento meccanico in condizioni estreme. Scelta del tipo di TBM e sue caratteristiche,» 3rd Symp. Europ?en de la Cconstruction des Tunnels, Berna (1996).
26. R. Grandori, «The universal TBM in the year 2000. Technical aspects and contractor consideration,» Gallerie e Grandi Opere Sotterranee, 50 (1996).
27. S. Pelizza and D. Peila, «Ground probing and treatments in rock TBM tunnelling: state of the art and innovations,» in: What Future for the Infrastructure? Innovations & Sustainable Development, Bocca Ed., Patron Editore, Bologna (2008).
28. G. Carrieri, «Report: Guidelines for the selection of TBMs — Recommendation and guidelines for TBMs,» ITA-AITES WG 14, Lausanne (2000).
29. J. R. Foster. «Gibraltar Strait crossing, characterization of TBM,» UN/ITA Workshop on Characterization for Tunnelling Flysches, Tarifa (1997).
30. G. Klados and Y. H. Kok, «Selection and performance of TBM in Karstic Limestone-SMART case,» Int. Congress on Mechanized Tunnelling «Challenging Case Histories», GEAM/SIG, Torino (2004).
31. J. M. Demorieux, «Reconnaissances a l’advancement a partir du TBM,» UN/ITA Workshop on Gibraltar Strait Fixed Link «Characterisation on TBM for Tunnelling Flysche», Tarifa (1997).
32. E. Leca, «Investigation ahead of the face,» EUPALINOS 2000 General Report, AFTES Ed., Paris (2000).
33. R. Leonardi, Kunming Zhangjiuhe Water Diversion and Water Supply project. The influence of geological adversities on TBM performances," Int. Congress on Mechanized Tunnelling «Challenging Case Histories», GEAM/SIG, Torino (2004).
34. D. Fabbri, «Experiences from the ground probing in the Gotthard-Base tunnel,» ITA Training Course: Tunnel Engineering, Istanbul (2005).
35. K. Kovari and F. Descoeuders, Tunnelling Switzerland, Swiss Tunnelling Society, Zurich (2001).
36. J. M. Galera, «Sonic soft ground probe system adapted to TBM,» UN/ITA Workshop on Characterization of TBM for Tunnelling Flysches, Tarifa (1997).
37. J. M. Galer and S. Pescador, «Metodos geofisicos no destructivos para predecir el terreno por delante de las tuneladoras,» IV UN-ITA Workshop on Gibraltar Strait Crossing, Madrid (2005).
38. L. Sambuelli, A. Godio, V. Socco, A. Dall’Ara, G. Vaira, and G. Deidda, «Metodi geofisici per la caratterizzazione degli ammassi rocciosi,» MIR 2004, Torino (2004).
39. P. P. Marcheselli and M. Ludde, «Esplorazione geologico-tecnica in tempo reale davanti alla testa fresante di TBM,» Convegno su: Le indagini geologiche e geotecniche propedeutiche alla costruzione delle opere sotterranee sia civile che minerarie, GEAM Ed., Modena (2002).
40. S. Mitani, T. Iwai, and H. Isahai, «Relations between conditions of rock mass and TBM’s feasibility,» Proc. 6th ISRM Congress, 1, Montreal (1987).
41. S. Mitani, «State of the art of TBM excavation and probing ahead technique,» Proc. 8th IAEG Congress, Vancouver (1989).
42. T. Morimoto and M. Hori, «Performance characteristics of tunnel boring machine from the geomechanical viewpoint,» Int. J. Rock Mech. Min. Sci., 23 (1986).
43. K. Nishioka and K. Aoki, «Hard rock tunnel boring prediction and field performance,» Proc. RETEC, Boston (1998).
44. I. Vielmo, «Grouting ad drainage treatment with relevant boring layouts,» IV UN-ITA Workshop on Gibraltar Strait Crossing, Madrid (2005).
45. D. Peila and S. Pelizza, «Ground reinforcing and steel pipe umbrella system in tunnelling,» Advances in Geotechnical Engineering and Tunnelling Rational Tunnelling, Logos Verlag, Berlin (2003).
46. AFTES, "Recommendation on grouting for underground works, " Tunnelling and Undeground Space Technology, 6 (1991).
47. ISRM, Final Report, Commission on Rock Grouting (1995).
48. G. Lombardi and D. Deere, «Grouting design and control using the GIN principle,» Water Power & Dam Construction (1993).
49. Y. Y. Tseng, S. L. Wong, B. Chu, and C. H. Wong, «The Pinglin mechanized tunnelling in difficult ground,» 8th Congress IAEG, Vancouver (1998).
50. Wen-Lon Cheng, «Hsuean Tunnel and TBM,» Int. Congress on Mechanized Tunnelling «Challenging Case Histories», GEAM/SIG, Turin (2004).
51. R. Grandori and P. Romualdi, «The Abdalajis tunnel (Malaga-Spain). The new Double Shield Universal TBM challenge,» Int. Congress on Mechanized Tunnelling: Challenging Case Histories, GEAM/SIG, Turin (2004).
52. Garnier, Pierron, Botte, Lebert, Giafferi and Vaskou, «Javanon Tunnel. Buetch development. Exceptional geological difficulties encountered when boring with a tunnel boring machine and adopted provisions,» Proc. Congr. on Soil and Rock Improvement in Underground Works, 2, Milan (1991).
53. E. Bethaz, S. Fuoco, S. Mariani, P. Porcari, and E. Rosazza Bondibene, «Riser tunnel excavation with TBM: the experience of the Maen tunnel,» Gallerie e Grandi Opere Sotterranee, 61 (2000).
54. A. Bellini, R. De Domenico, and G. Da Forno, «Gli infilaggi metallici a contatto per il superamento con fresa scudata a piena sezione di una frana al fronte in graniti completamente degradati, con forti venute d’acqua,» Proc. Congr. on Soil and Rock Improvement in Underground Works, SIG, 1, Milan (1991).
55. F. Zerilli and S. Campostrini, «Scavo di una galleria in sabbie fluenti. Interventi speciali di consolidamento e drenaggio,» Proc. Congr. on Soil and Rock Improvement in Underground Works, SIG, 2, Milan (1991).
56. G. Lombardi, Die Piora-Mulde. Gotthard_Basistunnel Sud, Delegation der Tessiner Parlamentarier, Lo, Minusio (CH) (1997).
57. E.Grov, «Introduction to water control in Norwegian tunnelling,» Water Control in Norwegian Tunnelling, Norwegian Tunnelling Society (2002).
58. O. T. Blindheim and E. Ovstedal, «Design principles and construction methods for water control in subsea road tunnels in rock,» Water Control in Norwegian Tunnelling, Norwegian Tunnelling Society (2002).
59. M. Brantberger, H. Stille, and M. Eriksson, «Controlling grout spreading in tunnel grouting analyses and developments of the GIN-method,» Tunnelling and Underground Space Technology, 15 (2000).
60. K. Miyaguchi, «Maintenance of the Kanmon Railway Tunnels,» Tunnelling and Underground Space Technology, 1 (1986).
61. S. Matsuo, «An overview of the Seikan Tunnel project,» Tunnelling and Underground Space Technology, 1 (1986).
62. Y. Maru and T. Maeda, «Construction of the Seikan Undersea Tunnel I. General scheme of execution,» Tunnelling and Underground Space Technology, 1 (1986).
63. Y. Mochida, «Rock mechanics in the Seikan Tunnel,» Rock Mechanics in Japan, Japanese Committee for ISRM, Tokio (1991).
64. K. Hashimoto and Y. Tanabe, «Construction of the Seikan Undersea Tunnel II. Execution of the most difficult sections,» Tunnelling and Underground Space Technology, 1 (1986).
65. B. Nilsen and A. Palmstrom, «Stability and water leakage of hard rock subsea tunnels,» Int. Cong. Modern Tunnelling Science and Technology, Kyoto, Japan (2001).
66. N. Barton, B. Buen, and S. Roald, «Strengthening the case of grouting. Part 1,» Tunnels & Tunnelling, December (2001).
67. N. Barton, B. Buen, and S. Roald, «Strengthening the case of grouting. Part 2,» Tunnels & Tunnelling, January (2002).
68. U. Fredriksen and E. Broch, «Grouting of Sewer Tunnels in Oslo,» Advances in Tunnelling Technology and Subsurface Use, 4 (1984).
69. H. Bejui and T. Avril, «French experience in the field of submarine tunnelling,» Tunnelling and Underground Space Technology, 1 (1986).
70. A. Balossi Restelli, «Chemical grouting treatment to allow the excavation of tunnels in rocks affected by infiltrations of toxic gas under pressure,» International Tunnel Symposium ’78: Tunnelling Under Difficult Conditions, J. T. A., Tokio (1978).


V. I. Vostrikov, V. V. Ruzhich*, and O. V. Federyaev**

The paper describes a multichannel measurement unit for pitwall state monitoring. A number of such measurement units combined provide the extensional monitoring with data transfer to a data acquisition and processing center situated on the open pit surface. Using message relay points allows the information transmission from any difficult-to-access site of open pits.

Measurement unit, monitoring, open pit, displacement recording

1. A. V. Dimaki and S. G. Psakh’e, «Spaced monitoring system for displacements in block media, designed based on SDVIG-4MR complex,» Journal of Mining Science, No. 2 (2009).
2. E. V. Kapustin and A. Yu. Efremov, «Intelligent amplifier for a strain measuring bridge,» Elektron. Nauch.-Tekh. Zh., October (2005).

Версия для печати  Версия для печати (откроется в новом окне)
Rambler's Top100   Рейтинг@Mail.ru
Федеральное государственное бюджетное учреждение науки
Институт горного дела им. Н.А. Чинакала
Сибирского отделения Российской академии наук
Адрес: 630091, Россия, Новосибирск, Красный проспект, 54
Телефон: +7 (383) 205–30–30, доб. 100 (приемная)
Факс: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© Институт горного дела им. Н.А. Чинакала СО РАН, 2004–2020. Информация о сайте