Rambler's Top100
     « »         
 »  » «- … »  » 2013  » JMS, Vol. 49, No. 1, 2013

JMS, Vol. 49, No. 1, 2013


O. M. Usoltseva, L. A. Nazarova, P. A. Tsoi, L. A. Nazarov, and V. N. Semenov

The authors have designed a test stand for origination and growth of discontinuities in rocks. Based on the laboratory experiment data obtained on artificial geomaterials and using the developed geomechanical model, equation of state for shear deformation of a discontinuity is synthesized.

Rock mass, discontinuity, test stand, experiment, elastoplastic model, verification, equation of state

1. Sadovsky, M.A., Bolkhovitinov, L.G., and Pisarenko, V.F., Deformirovanie sredy i seismicheskii protsess (Medium Deformation and Seismic Process), Moscow: Nauka, 1987.
2. Oparin, V.N., Kulakov, G.I., Dyadkov, P.G., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry i vozdeistvie na obekty nedropolzovaniya (Modern Geodynamics of Rocks in the Upper Lithosphere: Origin, Parameters and Impact), Novosibirsk: SO RAN, 2008.
3. Barton, N.R., Deformation Phenomena in Jointed Rock, Geotechnique, 1986, vol. 36, no. 2.
4. Pariseau, W.G., Design Analysis in Rock Mechanics, 2nd ed., London: CRC Press, Taylor & Francis Group, 2006.
5. Sherman, S.I., Bornyakov, S.A., Buddo, V.Yu., Truskov, V.A., and Babichev, A.A., Simulation of the Mechanism for Formation of Seismic Active Discontinuities in an Elastic-Viscous Medium, Geolog. Geofiz., 1985, no. 10.
6. Luchitsky, I.V. and Bondarenko, P.M., Eksperimentalnaya tektonika v teoreticheskoi i prikladnoi geologii (Experimental Tectonics in Theoretical and Applied Geology), Moscow: Nauka, 1985.
7. Paterson, M.S., Problems in the Extrapolation of Laboratory Rheological Data, Tectonophysics, 1987, vol. 133, nos. 1 2. 8. Rebetsky, Yu.L., Tektonicheskie napryazheniya i prochnost porodnykh massivov (Tectonic Stresses and Strength of Rock Masses), Moscow: Akademkniga, 2007.
9. Nikolaevsky, V.N., Geomekhanika i flyuidodinamika (Geomechanics and Fluid Dynamics), Moscow: Nedra, 1996.
10. Nazarova, L.A.,, Nazarov, L.A., and Kozlova, M.P., Dilatancy in Formation and Evolution of Disintegration Zones in the Vicinity of Heterogeneities in a Rock Mass, Journal of Mining Science, 2009, vol. 45, no. 5, pp. 411–419.
11. RF State Standards nos. 28985–91, 21153.8–88, 21153.3–85, 21153.2–84.
12. Rabotnov, Yu.N., Mekhanika deformiruemogo tela (Mechanics of Deformable Body), Moscow, Nauka, 1979.
13. Yufin, S.A., Mechanical Processes in a Rock Mass and Their Interaction with Underground Structures, Dr. Sci. (Eng.) Dissertation, Moscow: MGI, 1991.
14. Nakagawa, N., Jiang, Y., Kawakita, M., et al., Evaluation of Mechanical Properties of Natural Rock Joints for Discontinuous Numerical Analysis, Proc. ISRM Int. Symp. 3rd ARMS, Rotterdam: Millpress, 2004.

A. M. Linkov

The paper presents the analytical solution to a hydraulic fracture driven by a non-Newtonian fluid and propagating under plane strain conditions in cross sections parallel to the fracture front. Conclusions are drawn on the influence of fluid properties on the fracture propagation.

Hydraulic fracture, non-Newtonian fluid, particle velocity, analytical solution

1. Zheltov, Yu.P. and Khristianovich S. A., Hydraulic Fracturing in an Oil Reservoir, Izv. AN SSSR, OTN, 1955, no. 5.
2. Khristianovich, S.A. and Zheltov, V.P., Formation of Vertical Fractures by Means of Highly Viscous Liquid, Proc. 4th World Petroleum Congress, Rome, 1955.
3. Geertsma, J. and F. de Klerk, A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures, J. Pet. Tech., 1969, December.
4. Alekseenko, O.P. and Vaisman, A.M., Certain Aspects of a Two-Dimensional Problem of the Hydraulic Fracturing of an Elastic Medium, Journal of Mining Science, 1999, vol. 35, no. 3, pp. 269–275.
5. Perkins, T.K. and Kern, L.F., Widths of Hydraulic Fractures, J. Pet. Tech., 1961, Sept.
6. Nordgren, R.P., Propagation of a Vertical Hydraulic Fracture, Soc. Pet. Eng. J., 1972, August.
7. Adachi, J., E. Siebrits, E., et al., Computer Simulation of Hydraulic Fractures, Int. J. Rock Mech. Mining Sci., 2007, vol. 44.
8. Kovalyshen, Y. and Detournay, E., A Re-Examination of the Classical PKN model of Hydraulic Fracture, Transport in Porous Media, 2009, vol. 81.
9. Hu, J. and Garagash, D.I., Plane Strain Propagation of a Fluid-Driven Crack in a Permeable Rock with Fracture Toughness, ASCE. J. Eng. Mech., 2010, vol. 136.
10. Garagash, D.I., Detournay, E., and Adachi, J.I., Multiscale Tip Asymptotics in Hydraulic Fracture with Leak-off, J. Fluid Mech., 2011, vol. 669.
11. Mikhailov, D.N., Economides, M.J., and Nikolaevsky V. N., Fluid Leak-Off Determines Hydraulic Fracture Dimensions: Approximate Solution for Non-Newtonian Fracturing Fluid, Int. J. Engineering Sci., 2011, vol. 49.
12. Spence, D.A. and Sharp, P.W., Self-Similar Solutions for Elastohydrodynamic Cavity Flow, Proc. Roy Soc., London, Ser. A, 1985, vol. 400.
13. Adachi, J. and Detournay, E., Self-Similar Solution of Plane-Strain Fracture Driven by a Power-Law Fluid, Int. J. Numer. Anal. Meth. Geomech., 2002, vol. 26.
14. Garagash, D.I., Transient Solution for a Plane-Strain Fracture Driven by a Shear-Thinning, Power-Law Fluid, Int. J. Numer. Anal. Meth. Geomech., 2006, vol. 30.
15. Adachi, J.I. and Detournay, E., Plane Strain Propagation of a Hydraulic Fracture in a Permeable Rock, Eng. Fracture Mech., 2008, vol. 75.
16. Linkov, A.M., Velocity Equation and its Application to Solve Ill-Posed Hydrofracturing Problems, Dokl. Akad. Nauk, 2011, vol. 439, no. 4.
17. Linkov, A.M., Use of Speed Equation for Numerical Simulation of Hydraulic Fractures // available at: http://arxiv.org/abs/1108.6146, Date: Wed, 31 Aug 2011 07:47:52 GMT (726kb), Cite as: arXiv: 1108.6146v1 [physics.flu-dyn].
18. Linkov, A.M., On Efficient Simulation of Hydraulic Fracturing in Terms of Particle Velocity, Int. J. Engineering Sci., 2012, vol. 52.
19. Mishuris, G., Wrobel, M., and Linkov, A.M., On Modeling Hydraulic Fracture in Proper Variables: Stiffness, Accuracy, Sensitivity, Int. J. Engineering Sci., 2012, vol. 61.
20. Linkov, A.M., Numerical Modeling of Hydraulic Fractures: State of Art and New Results, Proc. XL Summer School-Conference Advanced Problems in Mechanics, APM 2012, Institute for Problems of Mechanical Engineering, RAS, CD-ROM, 2012.
21. Kresse, O., Cohen, C., Weng, X., et al., Numerical Modeling of Hydraulic Fracturing in Naturally Fractured Formations, Proc. 5th US Rock Mechanics Symposium, American Rock Mechanics Association, 2011.
22. Cipola, C., Weng, X., Mack M., et al., Integrating Microseismic Mapping and Complex Fracture Modeling to Characterize Fracture Complexity, Soc. Pet. Eng., Paper SPE 140185, 2011.

P. A. Martynyuk and A. V. Panov

The authors analyze numerically propagation of hydraulic fractures from a circular hole boundary under viscous fluid injection in plane strain condition, considering influence of the fluid viscosity and elastic characteristics. The approximate solution is compared with the recent numerical calculations of exact formulated problem. Effect of configuration of incipient hydraulic fractures on development of the overall hydrofracturing pattern is analyzed, and stable growth conditions for several long fractures are found.

Hydrofracturing patterns, compression field, fluid viscosity, leakages

1. Martynyuk, P.A. and Panov, A.V., Growth of Hydrofractures in an Oil and Gas Stratum under Impulse Loading, Journal of Mining Science, 2012, vol. 48, no. 3, pp. 457464.
2. Basheev, G.V., Martynyuk, P.A., and Sher, E.N., Effect of the Direction and Magnitude of an External Stress Field on the Trajectory of a Star-Shaped System of Cracks, Journal of Applied Mechanics and Technical Physics, 1994, vol. 35, issue 5, pp. 781792.
3. Martynyuk, P.A. and Sher, E.N., Effect of Free Surface on the Shape of a Zone Broken in Blasting of a Cord Charge in a Rock Mass, Journal of Mining Science, 1998, vol. 34, no. 5, pp. 438447.
4. Martynyuk, P.A., Features of Hydraulic Fracture Growth in the Compression Field, Journal of Mining Science, 2008, vol. 44, no. 6, pp. 544553.
5. Zubkov, V.V., Koshelev, V.F. and Linkov, A.M., Numerical Modeling of Hydraulic Fracture Initiation and Development, Journal of Mining Science, 2007, vol. 43, no. 1, pp. 4056.
6. Linkov, A.M., Numerical Modeling of Fluid Flow and a Hydraulically Induced Fracture Propagation, Journal of Mining Science, 2008, vol. 44, no. 1, pp. 2442.
7. Zheltov, Yu.P. and Khristianovich, S.A., Hydrofracturing of Oil Reservoir, Izv. AN SSSR, 1955, no. 5.
8. Geertsma, J. and de Klerk, F., A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures, J. Petr. Tech., 1969, no. 12.
9. Nordgren, R.P., Propagation of a Vertical Hydraulic Fracture, Soc. Pet. Eng. J., 1972, Aug.
10. Alekseenko, O.P. and Vaisman, A.M., Certain Aspects on a Two-Dimensional Problem on the Hydraulic Fracturing of an Elastic Medium, Journal of Mining Science, 1999, vol. 35, no. 3, 269275.
11. Alekseenko, O.P. and Vaisman, A.M., Exact Solution of One Classical problem on Hydraulic Fracturing, Journal of Mining Science, 2001, vol. 37, no. 5, pp. 493503.
12. Abramovits, M. And Stigan, I. (Eds.), Spravochnik po spetsialnym funktsiyam (Reference Guide on Special Functions), Moscow: Nauka, 1979.
13. Esipov, D.V., Modeling of Initiation and Propagation of Hydraulically Induced Fractures in Strata, Cand. (Phys.-Math.) Dissertation, Novosibirsk, 2011.
14. Panasyuk, V.V., Savruk, M.P., and Datsyshin, A.P., Raspredelenie napryazhenii okolo treshchin v plastinakh i obolochkakh (Stress Distribution near Cracks in Plates and Casings), Kiev: Naukova dumka, 1976.

V. I. Sleptsov and A. S. Kurilko

The article proposes mathematical model of heat exchange between open pitwall rocks and atmosphere for forecasting temperature field in permafrost strata, daily change in radiative balance, slope angle and surface orientation, and influence of contiguous benches. In terms of Udachny Open Pit Mine, time dependence of pitwall sloughing layer thickness is estimated under cyclic effect of freezingdefrostation in rocks having different freeze resistance.

Mathematical modeling, permafrost zone, heat exchange, thermophysics, rock properties, radiative balance, pitwall sloughing

1. Grechishchev, S.E., Chistotinov, L.V., and Shur, Yu.L., Osnovy modelirovaniya kriogennykh fiziko-geologicheskikh protsessov (Bases for Modeling Low-Temperature Physico-Geological Processes), Moscow: Nedra, 1984.
2. Zaretsky, Yu.K., Chumichev, B.D., and Shchebolev, A.G., Vyazkoplastichnost lda i merzlykh gruntov (Viscoplasticity of Ice and Frozen Grounds), Novosibirsk: Nauka, 1986.
3. Pavlov, A.V. and Olovin, B.A., Iskusstvennoe ottaivanie merzlykh porod teplom solnechnoi radiatsii pri razrabotke rossypei (Artificial Thawing of Frozen Rocks by Solar Radiation in Placer Mining), Novosibirsk: Nauka, 1974.
4. Kurilko, A.S., Eksperimentalnye issledovaniya vliyaniya tsiklov zamorazhivaniyaottaivaniya na fiziko-mekhanicheskie svoistva gornykh porod (Experimental Research of the Cyclic FreezingThawing Effect on Physico-Mechanical Properties of Rocks), Yakutsk: YaF GU, 2004.
5. Pavlov, A.V., Raschet i regulirovanie merzlotnogo rezhima pochvy (Calculation and Control of Freeze-and Thaw Mode in Soil), Novosibirsk: Nauka, 1980.
6. Pavlov, A.V., Teploobmen pochvy s atmosferoi v severnykh i umerennykh shirotakh territorii SSSR (Heat Exchange between Ground and Atmosphere in North and Moderate Latitudes on the USSR Territory), Yakutsk: Knizhn. Izd., 1975.
7. Kondratev, K.Ya., Pivovarova, Z.I., and Fedorova, M.I., Radiatsionnyi rezhim naklonnykh poverkhnostei (Radiation Mode of Inclined Surfaces), Leningrad: Gidrometeoizdat, 1982.
8. Shver, Ts.A. and Izyumenko, S.A. (Eds.), Klimat Yakutska (Climate of Yakutsk), Leningrad: Gidrometeoizdat, 1982.
9. Polubelova, T.N., Sleptsov, V.I., and Izakson, V.Yu., Mathematical Modeling of the Heat-Exchange Process in a Quarry Bench in a Permanently Frozen Rocks, Journal of Mining Science, 1996, vol. 32, no. 3, pp. 197204.
10. Marchuk, G.I., Metody vychislitelnoi matematiki (Numerical Mathematics Methods), Moscow: Nauka, 1977.
11. Okhlopkov, N.M., Metodologicheskie voprosy teorii i praktiki raznostnykh skhem (Methodological Issues of the Theory and Practice of Difference Schemes), Irkutsk: Izd. un., 1989.
12. Samarsky, A.A., Vvedenie v teoriyu raznostnykh skhem (Introduction in the Theory of Difference Schemes), Moscow: Nauka, 1971.
13. Samarsky, A.A., Teoriya raznostnykh skhem (Theory of Difference Schemes), Moscow: Nauka, 1977.
14. Ilin, V.P. and Kuznetsov, Yu.I., Trekhdiagonalnye matritsy i ikh prilozheniya (Tridiagonal Matrices and Their Applications) Moscow: Nauka, 1985.
15. Vasilev, V.I., Chislennoe integrirovanie differentsialnykh uravnenii s nelokalnymi granichnymi usloviyami (Numerical Integration of Differential Equations with Nonlocal Boundary Conditions), Yakutsk: YaF SO AN SSSR, 1985.

G. L. Lindin and T. V. Lobanova

The authors analyze stressstrain state of elastic plane with circular void in varied loading conditions, draw energy flow lines, highlight effect of clustered seismic events on the flow line shapes, and propose definition of rockburst probability.

Rockbursts in mines, distribution of epicenters of seismic events, energy flow lines, rockburst probability

1. Revuzhenko, A.F. and Klishin, S.V., Energy Flux Lines in a Deformable Rock Mass with Elliptical Openings, Journal of Mining Science, 2009, vol. 45, no. 3, pp. 201206.
2. Kozyrev, A.A., Savchenko, S.N., Panin, V.I., and Maltsev, V.A., Prediction and Prevention of Strong Dynamic Events in Natural and Engineering Structures, Proc. Conf. Geodynamics and Stress State of the Earths Interior, Novosibirsk: IGD SO RAN, 2001.
3. Umov, N.A., Izbrannye sochineniya (Selectals), MoscowLeningrad: Gostekhizdat, 1950.
4. Landau, L.D. and Lifshits, E.M., Electrodynamics of Continuous Media, Pergamon Press, 1960.
5. Kramarenko, V.I. and Revuzhenko, A.F., Flow of Energy in a Deformed Medium, Journal of Mining Science, 1988, vol. 24, no. 6, pp. 536540.
6. Sedov, L.I., Mekhanika sploshnoi sredy (Mechanics of Continuous Medium), Moscow: Nauka, 1970.
7. Ponomarev, V.S., Turuntaev, S.B., Voinov, A.K., Kreskov, A.S., and Logunov, V.A., Investigation of Excited-Seismicity Regimes in Mines of the Northern Urals Bauxite Deposits, Journal of Mining Science, 1992, vol. 28, no. 4, 318323.
8. Lindin, G.L. and Lobanova, T. V. Pre-Rockbursting Seismic Activity in Tashtagol Mine, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 260268.

V. N. Aptukov and V. Yu. Mitin

The article considers statistical properties of surfaces of sylvite, spathic salt and carnallite grains in nanorange. The authors describe processed experimental data obtained on scanning microprobe Dimension ICON in nanorange for grains of the Upper Kama potassium and potashmagnesium rock salts. Fractal dimension determined by minimum cover method is used as a characteristic of the grain surface roughness. The authors find differences in statistic properties of one-dimension divergent cuts of the grain surfaces.

Salt rocks, grain, Dimension ICON, nanorange, fractal dimension, minimum covering method

1. Kuznetsov, P.V., Petrakova, I.V., and Shraiber, Yu., Fractal Dimension as a Characteristic of Fatigue of Metal Crystals, Fiz. Mezomekh., 2004, vol. 7, no. 1 (Special Issue).
2. Aptukov, V.N., Mitin, V.Yu. and Skachkov, A.P., Analysis of Surface Micro-Relief of Sylvite Using the Hurst Method, Vest. Perm. Un-ta: Matem. Mekhan. Inform., 2010, issue 4.
3. Aptukov, V.N., Konstantinova, S.A., Mitin, V.Yu., and Skachkov, A.P., Nano- and Micro-Range Mechanical Characteristics of Sylvite Grain, Journal of Mining Science, 2012, vol. 48, no. 3, pp. 429435.
4. Dubovikov, M.M., Kryanev, A.V., and Starchenko, N.V., Minimum Cover Dimension and Local Analysis of Fractal Time Series, Vest. RUDN, 2004, vol. 3, no. 1.
5. Feder, J., Fractals, New York: Plenum Press, 1988.
6. Mandelbrot, B., The Fractal Geometry of Nature, 1st Edition, 1982.
7. Hausdorff, F., Dimension und Ausseres Mass, Matematishe Annalen, 1919, no. 79.
8. Gallant, J.C., Moore, I.D., Hutchinson, M.F., and Gessler, P., Estimating Fractal Dimension of Profiles: A Comparison of Methods, Mathematical Geology, 1994, vol. 265, n. 4.
9. Gneiting, T., Sevcikova, H., and Percival, D., Estimator of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data, arXiv: 1101.1444v1 [stat. ME] 7 Jan 2011.

S. V. Cherdantsev

The author studies buoyancy of pontoons used in open pit coal mines based on the fundamental principles of the ship theory and finds safe height of pontoon upperworks. The derived formulas for metacentric heights are used in the analysis of pontoon stability.

Pontoons, buoyancy, heeling moment, righting moment, stability

1. Kucher, N.A., Cherdantsev, S.V., Protasov, S.I., Podobrazhin, S.N., and Bilibin, V.V., Safe Operation of Floating Pumping Stations, Bezop. Truda Prom., 2003, no. 1.
2. Zhukovsky, N.E., Teoreticheskaya mekhanika (Theoretical Mechanics), Moscow: Gostekhizdat, 1952.
3. Appel, P., Teoreticheskaya mekhanika. Tom 1: Statika. Dinamika tochki (Theoretical Mechanics. Vol. 1: Statics. Dynamics of Point), Moscow: Fizmatgiz, 1960.
4. Borisov, R.V., Lugovsky, V.V., Mirokhin, B.M., and Rozhdestvensky, V.V., Statika korablya (Statics of the Ship), Saint-Petersburg: Sudostroenie, 2005.
5. Semenov-Tyan-Shansky, V.V., Statika i dinamika korablya (Statics and Dynamics of the Ship), Leningrad: Sudostroenie, 1973.
6. Blagoveshchensky, S.N. and Kholodilin, A.N., Spravochnik po statike i dinamike korablya. Tom 1: Statika korablya (Reference Guide on Statics and Dynamics of the Ship. Volume 1: Statics of the Ship), Leningrad: Sudostroenie, 1976.
7. Darkov, A.V. and Shpiro, G.S., Soprotivlenie materialov (Strength of Materials), Moscow: Vyssh. shkola, 1975.
8. Belyaev, N.M., Soprotivlenie materialov (Strength of Materials), Moscow: Nauka, 1965.

V. V. Skazka, S. V. Serdyukov, G. N. Erokhin, and A. S. Serdyukov

The authors have developed and numerically analyzed a model of near-field range of the percussion-type well seismic source emission. The obtained estimates of attack energy on productive strata at underspeed seismic waves and varied position of the source relative to the stratum are presented in the article.

Seismic source, well, near-field range, force along well axis

1. Dryagin, V.V., Kuznetsov, O.L., Starodubtsev, A.A., and Rock, V.E., Prospecting Hydrocarbons by Induced Acoustic Emission in Wells, Akust. Zh., 2005, vol. 51, no. 7.
2. Alekseev, A. and Serdyukov, S., On Some Characteristics of Rocks That Reveal Themselves after Long Sessions of Vibration Action, Proc. 1st Int. Workshop on Active Monitoring in the Solid Earth Geophysics (IWAM04), Japan, 2004.
3. Alekseev, A.S., Geza, N.I., Glinsky, B.M., Emanov, A.F., Kashun, V.N., Kovalevsky, V.V., Manshtein, A.K., Mikhailenko, B.G., Seleznev, V.S., Serdyukov, S.V., Sobisevich, A.L., Sobisevich, L.E., Solovev, V.M., Khairetdinov, M.S., Chichinin, I.S., and Yushin, V.I., Aktivnaya seismologiya s moshchnymi vibratsionnymi istochnikami (Active Seismology with Powerful Vibration Sources), Tsibulchik, G.M. (Ed.), Novosibirsk: IVMiMG SO RAN, 2004.
4. Svalov, A.M., Mechanism of Wave Treatment of Productive Strata, Neft. Khoz., 1996, no. 7.
5. Alekseev, A.S., Altunina, L.K., Belonosov, V.S., Dorovsky, V.N., Imomnazarov, Kh.Kh., Serdyukov, S.V., and Skazka, V.V., Physico-Mathematical Model of Processes Running in an Oil Stratum under Wave Treatment, Interval, 2005, no. 11.
6. Nikolaevsky, V.N. and Stepanova, G.S., Nonlinear Seismics and Acoustic Effect on a Reservoir Recovery, Akust. Zh., 2005, vol. 51, no. 7.
7. Kurlenya, M.V. and Serdyukov, S.V., Reaction of Fluids of an Oil-Producing Stratum to Low-Intensity Vibro-Seismic Action, Journal of Mining Science, 1999, vol. 35, no. 2, pp. 113119.
8. Serdyukov, S.V. and Kurlenya, M.V., Mechanism of Oil Recovery Stimulation by Low-Intensity Seismic Fields, Akust. Zh., 2007, vol. 53, no. 5.
9. Gadiev, S.M., Ispolzovanie vibratsii v dobyche nefti (Application of Vibration in Oil Recovery), Moscow: Nedra, 1977.
10. Dyblenko, V.P., Kamlov, R.N., Sharifullin, Z.Ya., and Tufanov, I.A., Povyshenie effektivnosti i reanimatsiya skvazhin s primeneniem vibrovolnovogo vozdeistviya (Oil Recovery Enhancement and Revivification of Wells by Vibro-Wave Treatment), Moscow: Nedra, 2000.
11. Serdyukov, S.V., Development of Method of Surface Vibro-Seismic Treatment of Oil Strata, Cand. (Tech. Sci.) Dissertation, Novosibirsk: IGD SO RAN, 1998.
12. Sadovsky M. A., Abasov, M.T., and Nikolaev, A.V., Prospects of Oil Recovery Enhancement by Vibration Treatment of an Oil Pool, Vestn. AN SSSR, 1986, no. 9.
13. Malakhov, A.P., Ryashentsev, N.P., and Makaryuk, N.V., Validation of Vibroseismic Source Design for the Vibrative Showthrough of the Earth, Issledovanie Zemli nevzryvnymi seismicheskimi istochnikami (Earth Exploration by Non-Explosive Seismic Sources), Moscow: Nauka, 1981.
14. Makaryuk, N.V., Klishin, V.I., and Zolotykh, S.S., Analysis of the Effect Exerted by Vibro-Responsiveness of Rocks on Coal Methane Recovery under Vibro-Seismic Impact, Gorn. Inform.-Analit. Buyll., 2002, no. 6.
15. Serdyukov, S.V., Influence of the Vibroseismic Field on the Thermal and Filtration Processes in Bituminous Reservoir, Journal of Mining Science, 2001, vol. 37, no. 2, pp. 117123.
16. Makaryuk N. V., Seismic Vibration Treatment of a Pay Zone for Improvement of the Filtration and Production Parameters of Underground Metal Leaching, Journal of Mining Science, 2009, vol. 45, no. 6, pp. 590601.
17. Chichinin, I.S., Vibratsionnoe izluchenie seismicheskikh voln (Vibration Emission by Seismic Waves), Moscow: Nauka, 1984.
18. Abo-Zena, A.M., Radiation from a Finite Cylindrical Explosive Source, Geophysics, 1977, no. 42.
19. Iskhakov, I.A., Gainullin, K.Kh., Gabdrakhmanov, N.Kh., Nazmiev, I.M., Galiullin, T.S., Shamsutdinov, A.M., Yakupov, R.F., Kirillov, I.A., Malets, O.N., Galimov, S.F., and Mingulov, Sh.G., RF patent no. 2171354, Byull. Izobret., 2011, no. 21.
20. Lisovsky, N.N., Ashchepkov, M.Yu., Ashchepkov, Yu.S., and Sukhov, A.A., A New Conception of Wave Technologies for Oil and Gas Reservoir Recovery, Vestn. TsKR Rosnedra, 2009, no. 6.
21. Svalov, A.M., Analysis of Usability of Bottom-Well Pumps as Shock-Wave Generators to Treat Productive Strata, Geolog., Geofiz., Razrab. Neft. i Gaz. Mestorozhd., 2003, no. 3.
22. Kostrov, S. and Wooden, W., In Situ Seismic Stimulation Shows Promise for Revitalizing Mature Fields, Oil & Gas Journal, 2005, vol. 103, vo. 15.
23. Serdyukov, S.V., Erokhin, G.N., and Cherednikov, E.N., RF patent no. 2327034, Byull. Izobret., 2008, no. 17.
24. Serdyukov, S.V., Sher, E.N., and Aleksandrova, N.I., Calculation of Fluid Flow in the Oil Well under the Action of Powder Gas Generator, Journal of Mining Science, 2009, vol. 48, no. 4, pp. 344355.
25. Kurlenya, M.V., Serdyukov, S.V., and Tkach, Kh.B., RF patent no. 2172400, Byull. Izobret., 2001, no. 23.
26. Kurlenya, M.V. and Serdyukov, S.V., Determination of the Region of Vibroseismic Action on an Oil Deposit from the Daylight Surface, Journal of Mining Science, 1999, vol. 35, no. 4, pp. 333340.
27. Serdyukov, S.V., Experimental Basis of the Vibroseismic Oil Recovery Technology, Dr. (Tech. Sci.) Dissertation, Novosibirsk: IGD SO RAN, 2001.
28. Kurlenya, M.V. and Serdyukov, S.V., New Oil and Gas Recovery Technologies, Report on Project no. 2006-RI-112.0/001/369 of RF Federal Target Program, Novosibirsk: IGD SO RAN, 2006.
29. Veselkov, S.N., Technical-and-Economic Efficiency of Oil and Gas Recovery Enhancement Techniques, Nedropolz.XX vek, 2007, no. 2.


J. Benndorf and R. Dimitrakopoulos

Meeting production targets in terms of ore quantity and quality is critical for a successful mining operation. In-situ grade variability and uncertainty about the spatial distribution of ore and quality parameter cause both deviations from production targets and general financial deficits. A stochastic integer programming formulation (SIP) is developed herein to integrate geological uncertainty described by sets of equally possible scenarios of the unknown orebody. The SIP formulation accounts not only for discounted cashflows and deviations from production targets, discounts geological risk, while accounting for practical mining. Application at an iron ore deposit in Western Australia shows the ability of the approach to control a risk of deviating from production targets over time. Comparison shows that the stochastically generated mine plan exhibits less risk in deviating from quality targets than the traditional mine planning approach based on a single interpolated orebody model.

Open pit optimization, stochastic simulation, multi-element deposits, iron ore

1. David, M., Geostatistical Ore Reserve Estimation, Amsterdam: Elsevier, 1977.
2. David, M., Handbook of Applied Advanced Geostatistical Ore Reserve Estimation, Amsterdam: Elsevier, 1988.
3. Goovaerts, P., Geostatistics for Natural Resources Evaluation, New York: Oxford University Press, 1997.
4. Rondon, O., Teaching Aid: Minimum/Maximum Autocorrelation Factors for Joint Simulation of Attributes, Mathematical Geosciences, 2012, vol. 44.
5. Dimitrakopoulos, R., Risk Analysis in Ore Reserves and Mine Planning: Conditional Simulation Concepts and Applications for the Mining Industry, AusIMM-McGill 2007 Professional Development Seminar Series, 2007.
6. Ravenscroft, J.P., Risk Analysis for Mine Scheduling by Conditional Simulation, Transactions of the Institute of Mining and Metallurgy, Section A, 1992, vol. 101.
7. Dowd, P.A., Risk in Minerals Projects: Analysis, Perception and Management, Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 1997, vol. 106.
8. Dimitrakopoulos, R., Farrelly, C.T. and Godoy, M.C., Moving forward from Traditional Optimization: Grade Uncertainty and Risk Effects in Open-Pit Design, Transactions of the Institutions of Mining and Metallurgy, Section A: Mining Technology, 2002, vol. 111.
9. Godoy, M.C. and Dimitrakopoulos, R., Managing Risk and Waste Mining in Long-Term Production Scheduling, SME Transactions, 2004, vol. 316.
10. Leite, A. and Dimitrakopoulos, R., A Stochastic Optimization Model for Open Pit Mine Planning: Application and Risk Analysis at a Copper Deposit, IMM Transactions, Mining Technology, 2007, vol. 116.
11. Albor, F. and Dimitrakopoulos, R., Stochastic Mine Design Optimization Based on Simulated Annealing: Pit Limits, Production Schedules, Multiple Orebody Scenarios and Sensitivity Analysis, IMM Transactions, Mining Technology, 2009, vol. 118.
12. Birge, J.R. and Louveaux, F., Introduction to Stochastic Programming, New York: Springer-Verlag, 1997.
13. Ramazan, S. and Dimitrakopoulos, R., Production Scheduling with Uncertain Supply: A New Solution to the Open Pit Mining Problem, Optimization and Engineering, DOI 10.1007/s11081–012–9186–2, 2012.
14. Dimitrakopoulos, R., Stochastic Optimization for Strategic Mine Planning: A Decade of Developments, Journal of Mining Science, 2011, vol. 47, no. 2, pp. 138150.
15. Albor, F. and Dimitrakopoulos, R., Algorithmic Approach to Pushback Design Based on Stochastic Programming: Method, Application and Comparisons, IMM Transactions, Mining Technology, 2010, vol. 119.
16. Lamghari, A. and Dimitrakopoulos, R., A Diversified Tabu Search Approach for the Open-Pit Mine Production Scheduling Problem with Metal Uncertainty, European Journal of Operational Research, 2012, vol. 222.
17. Asad, M. W. A. and Dimitrakopoulos, R., Implementing a Parametric Maximum Flow Algorithm for Optimal Open Pit Mine Design under Uncertain Supply and Demand, Journal of the Operational Research Society, DOI:10.1057/jors.2012.26, 2012.
18. Whittle, G., Global Asset Optimization. Orebody Modeling and Strategic Mine Planning: Uncertainty and Risk Management Models, The Australian Institute of Mining and Metallurgy, Spectrum Series, 2nd Edition, 2007, vol. 14.
19. Goodfellow, R. and Dimitrakopoulos, R., Algorithmic Integration of Geological Uncertainty in Pushback Designs for Complex Multiprocess Open Pit Mines, IMM Transactions, Mining Technology, 2013, vol. 122.
20. Stone, P., Froyland, G., Menabde, M., Law, B., Pasyar, R., and Monkhouse, P., BLASOR-Blended Iron Ore Mine Planning Optimization at Yandi. Orebody Modeling and Strategic Mine Planning: Uncertainty and Risk Management Models, The Australian Institute of Mining and Metallurgy, Spectrum Series, 2nd Edition, 2007, vol. 14.
21. Dimitrakopoulos, R. and Ramazan, S., Uncertainty-Based Production Scheduling in Open Pit Mining, SME Transactions, 2004, vol. 316.
22. Boucher, A. and Dimitrakopoulos, R., Multivariate Block-Support Simulation of the Yandi Iron Ore Deposit, Western Australia, Mathematical Geosciences, 2012, vol. 44.
23. Benndorf, J., Efficient Sequential Simulation Methods with Implications on Long-Term Production Scheduling, Unpublished MPh. Thesis, Brisbane: The University of Queensland, 2005.

L. A. Krupnik, Yu. N. Shaposhnik, S. N. Shaposhnik, and A. K. Tursunbaeva

The article reviews backfilling complexes operating at Kazakhstan mines and describes laboratory and industrial tests of effect of cementash binder and plastifier combination on rheological properties and strength of filling masses.

Backfilling operations, backfilling mixture, ash, plastifier addition, rheological properties and strength of filling

1. Krupnik, L.A., Shaposhnik, Yu.N., and Shaposhnik, S.N., Progress in Backfilling in Kazakhstan Mines, Gorny Zh., 2012, no. 10.
2. Gusev, Yu.P., Berezikov, E.P., Krupnik, L.A., Shaposhnik, Yu.N., and Shaposhnik, S.N., Resource-Saving Geotechnologies in Maleevsky Mine of Zyryanovsky Mining and Metallurgical Integrated Works (Kazzinc Co.), Gorny Zh., 2008, no. 11.
3. Krupnik, L.A., Shaposhnik, Yu.N., and Shaposhnik, S.N., Analysis of Backfill Mixture Compositions for Underground Mining in East Kazakhstan, Gorny Zh., 2010, no. 4.
4. Berezikov, E.P., Krupnik, L.A., Shaposhnik, Yu.N., and Shaposhnik, S.N., Diversification of Backfill Mixture Components in Preparation Flowsheet, Gorny Zh. Kazakh., 2009, no. 4.
5. Bitimbaev, M.Zh., Krupnik, L.A., and Shaposhnik, Yu.N., Teoriya i praktika zakladochnykh rabot pri razrabotke mestorozhdenii poleznykh iskopaemykh (Theory and Practice of Backfilling in Mineral Mining), Almaty: Assots. Vuzov Kazakhstana, 2012.
6. Vorobev, A.E., Krupnik, L.A., Shaposhnik, Yu.N., and Shaposhnik, S.N., Methods of Backfill Mixture Feeding in Mines in East Kazakhstan, Gorny vestn. Uzbek., 2010, vol. 43, no. 4.
7. Barilyuk, A.I., Ryshkel, I.A., Tkachev, V.M., Makarov, A.B., Ort, V.G., and Ananin, A.I., Orlovsky Deposit Mining with Top-Down Horizontal Slicing Method, Gorny Zh., 2002, no. 5.
8. Nikolaev, E.N., Gultyaev, V.G., and Kozhbanov, K.Kh., Technology of Hardening Backfill Mixture Preparation in Orlovsky Mine, Gorny Zh., 2002, no. 5.
9. Krupnik, L.A., Shaposhnik, Yu.N., and Shaposhnik, S.N., Selection of the Efficient Backfilling Technology in Suzdalsky Mine of Alel JSC, Trudy KarGTU, 2011, vol. 43, no. 2.
10. Krupnik, L.A., Shaposhnik, Yu.N., and Shaposhnik, S.N., Possibility to Improve Strength Properties of Filling Masses in Mining with Slicing Systems, Gorny Zh. Kazakh., 2012, no. 6.
11. Anushenkov, A.N., Freidin, A.M., and Shalaurov, V.A., Preparation of Molten Solidifying Fill from Production Wastes, Journal of Mining Science, 1998, vol. 34, no. 1, pp. 8690.
12. Muzgina, V.S., Experience and Prospects of Using Production Waste in Backfill Mixtures, Tr. IGD A. D. Kunaeva, 2004, no. 68.
13. Falikman, V.R., Vainer, A.Ya., and Bashlykov, N.F., New Generation of Super Plastifiers, Beton Zhelezobeton, 2000, no. 5.
14. Krupnik, L.A., Shaposhnik, Yu.N., Shaposhnik, S.N., and Shushkevich, K.A., Selection of Backfill Mixture Feeding Method in Underground Mines Tr. IGD. A. D. Kunaeva, 2010, no. 79.
15. Metodicheskie ukazaniya po opredeleniyu normativnoi prochnosti tverdeyushchei zakladki i otsenke prochnostnykh svoistv iskusstvennykh massivov (Instructional Guidelines on Determination of Hardening Backfill Mixture Strength Characteristics and Evaluation of Strength of Filling Masses), Leningrad: VNIMI, 1975.
16. Normy tekhnologicheskogo proektirovaniya gornodobyvayushchikh predpriyatii s podzemnym sposobom razrabotki (metodicheskie rekomendatsii) (Production Design Standards for Underground Mines), under Decree of Committee for Governmental Control over Emergencies and Industrial Safety of the Republic of Kazakhstan, no. 46, dated Dec 4 , 2008.

I. V. Sokolov, A. A. Smirnov, Yu. G. Antipin, and K. V. Baranovsky

Simultaneous extraction of ore reserves from open pitwall and the layer immediately adjacent to the open pit bottom results in higher volume of ore discharge in the limited bottom area, besides the bottom must be stable within the adjacent layer extraction interval. The authors select the pit bottom design with two-way alternate arrangement of loading entries, taking into account the use of power-driven loadhauldumpers. The ore output with the given pit bottom design is evaluated.

Ore discharge, pit bottom, discharge workings

1. Volkov, Yu.V. and Sokolov, I.V., Optimization of Underground Geotechnology in Strategy of Ore Mining by Combination Method, Gorny Zh., 2011, no. 11.
2. Chadwick, J., Palabora Goes Underground, Mining Magazine, 1997, vol. 177, no. 1.
3. Abramov, V.F., Lushnikov, V.I., and Bobin, S.A., Improvement of Bottom Designs in the Technologies of Ore Discharge from Block Bottoms, Gorny Zh., 1986, no. 5.
4. Eremenko, A.A., et al., Flowsheets of Underground Ore Mining at Odinochnoe Deposit, Gorny Zh., 2006, no. 8.
5. Nabatov, V.V., et al., Basis for Higher Stability Extraction Block Bottoms in Thick Ore Body Mining, Gorn. Inform.-Analit. Byull., 2006, no. 2.
6. Demidov, Yu.V., et al., Improvement of Trench Bottom Design Using Powered Machinery for Ore Discharge in Underground Mining with Caving in Apatit JSC Mines, Gorny Zh., 2008, no. 2.
7. Abramov, V.F. and Khairutdinov, M.M., Kimberlite Mining with Block Caving of Ore and Enclosing Rocks, Gorn. Inform.-Analit. Byull., 1998, no. 3.
8. Sokolov, I.V., Smirnov, A.A., Antipin, Yu.G., and Kulminsky, A.S., Extraction of Udachnaya Kimberlite Pipe Reserves under Open Pit Bottom in the Severe Climate, Mining and Hydrogeological Conditions, Gorny Zh., 2011, no. 1.
9. Rivkin, I.D., Voloshchenko, V.P., and Maimin, L.R., Instruktivnye ukazaniya po opredeleniyu parametrov system razrabotrki s obrusheniem po usloviyam proyavlenya gornogo davleniya s uvelicheniem glubiny vedeniya gornykh rabot na shakhtakh Krivbassa (Guidelines on Determining Parameters of Mining Methods with Caving Based on Ground Pressure in Deeper Level Mining in Krivbass Mines), Krivoi Rog: NIGRI, 1964.
10. Malakhov, G.M., Bezukh, R.V., and Petrenko, P.D., Teoriya i praktika vypuska rudy (Theory and Practice of Ore Drawing), Moscow: Nedra, 1968.
11. Metodika obespecheniya seismobezopasnoi tekhnologii vedeniya vzryvnykh rabot (Seismically Safe Blasting Technology Procedure), Sverdlovsk: IGD MChM SSSR, 1984.
12. Nikolin, V.I., Influence of Wear of Ore Discharge Walls on the Opening Bottom, Podzemnaya razrabotka rudnykh mestorozhdenii (Underground Ore Mining), Issue 2, Sverdlovsk: IGD UFAN SSSR, 1962.
13. Stazhesvky, S.B., Formation of Peak Loads on Walls of a Vessel, Proc. All-Union Conf. Mechanics of Granular Materials, Odessa: OTIPP, 1980.
14. Stazhevsky, S.B., Stresses in the Neighborhoods of Defects in Bunker Walls, Journal of Mining Science, 1982, vol. 18, no. 5, pp. 379387.
15. Medvedev, I.F., Abramov, A.V., and Nefedov, A.P., Likvidatsiya zavisanii i povtornoe droblenie rudy (Elimination of Ore Sticking and the Ore Regrinding), Moscow: Nedra, 1975.
16. Abramov, V.F., et al., Enhancement of Stability of Extraction Block Bottom in Molibden Mine, Tsvet. Met., 1976, no. 19. 17. Kulikov, V.V., Vypusk rudy (Ore Drawing), Moscow: Nedra, 1980.
18. Dubynin, N.G., Vypusk rudy pri podzemnoi razrabotke (Ore Drawing in Underground Mining), Moscow: Nedra, 1965.
19. Stazhevsky, S.B., First Mode of Flow for Loose Materials in Bunkers, Journal of Mining Science, 1983, vol. 19, no. 3, pp. 117182.
20. Stazhevsky, S.B., Features of the StressStrain State of Loose Materials in Converging Channels and Bunkers, Journal of Mining Science, 1986, vol. 22, no. 3, pp. 169–176.
21. Smirnov, A.A. and Sokolov, I.V., Use of Block Caving Method in the Presence of Karst in Ore and Enclosing Rocks, Bezop. Truda Prom., 2011, no. 4.

V. S. Litvintsev

Considering potential resources left in waste dumps after gold placer mining and based on the analysis of waste dump samples taken in two large gold placer mines, the article illustrates renewability of the resources left in waste dumps of placers under effect of natural processes (low-temperature, gravity water flow, suffosion, etc.).

Renewability of resources in placer waste dumps, low-temperature influence, suffosion, chemical reactions

1. Benevolsky, B.I. and Shevtsov, T.P., Capacity of Gold Placer Waste Dumps in Russian Federation, Mineral. Resurs., 2000, no. 1.
2. Kovlekov, I.I., Tekhnogennoe zoloto Yakutii (Mining-Generated Gold of Yakutia), Moscow: MGGU, 2002.
3. Vlasov, A.S., Gold Distribution in Waste Dumps, Trudy VNIMI, 1960, issue 65.
4. Mamaev, Yu.A., Litvintsev, V.S., Sheveleva, E.A., Ponomarchuk, G.P., and Shapovalov, V.S., Problems of Exploitation of Waste Dumps at Placer Mines in the Far East, Ratsionalnoe osvoenie mestorozhdenii poleznykh iskopaemykh Dalnego Vostoka: sb. nauch. tr. IGD DVO RAN (Sound Development of Mineral Deposits in the Far East: Collected Works of the Institute of Mining, Far East Branch, Russian Academy of Sciences), Vladivostok: Dalnauka, 1997.
5. Litvintsev, V.S. and Mamaev, Yu.A., Problems of Exploitation of Waste Dumps as a Standby Resource in the Gold Placer Mining, Gorn. Inform-Analit. Byull., 1997, no. 2.
6. Boiko, V.F., Mamaev, Yu.A., and Litvintsev, V.S., Reason of Gold Concentration at Bedrock in a Placer Mine, Kolyma, 1998, no. 4.
7. Litvintsev, V.S., Boiko, V.F., and Mamaev, Yu.A., Estimation Procedure for Gold Content of Placer Mine Waste Dumps in Terms of the Upper Amur Area, Kolyma, 1999, no. 1.
8. Mamaev, Yu.A., Litvintsev, V.S., Ponomarchuk, G.P., Yatsyk, I.A., and Podshivalov, V.S., Experimental Research of Gold Extraction from Very Fine Tailings of Washing at Placers, Aktualnye problemy povysheniya effektivnosti kompleksnogo osvoeniya poleznykh iskopaemykh Dalnego Vostoka: sb. nauch. tr. IGD DVO RAN (Current Challenges of Improving Comprehensive Mineral in the Far East: Collected Works of the Institute of Mining, Far East Branch, Russian Academy of Sciences), Vladivostok: Dalnauka, 1999.
9. Mamaev, Yu.A., Litvintsev, V.S., Ponomarchuk, G.P., and Shapovalov, V.S., Problems of Accumulation and Development of Placer Mine Wastes in the Far East, Vseross. Soveshchanie, posvyashchennoe 90-letiyu akademika N. A. Shilo (All-Russian Conference in Honor of the 90th Anniversary of Academician N. A. Shilo), Magadan: SVKNII, 2003.
10. Mamaev, Yu.A, Litvintsev, V.S., Yatlukova, N.G., Koltun, A.G., and Bogdanovich, A.V., New Approaches to Estimating Phase Composition of Commercial Components in Waste Dumps and Their Extraction Techniques, Obog. Rud, 2003, no. 6.
11. Mamaev, Yu.A., Litvintsev, V.S., Ponomarchuk, G.P., Banshchikova, T.S., and Shokina, L.N., Revealing Genetic Features of Large Waste Dumps at Gold Placer Mines of the Far East Aimed at Their Rational Accumulation and Efficient Development, Problemy kompleksnogo osvoeniya superkrupnykh rudnykh mestorozhdenii (Problems of Development of Super-Large Ore Deposits), K. N. Trubetskoy and D. R. Kaplunov (Eds.), Moscow: IPKON RAN, 2004.
12. Litvintsev, V.S., Ponomarchuk, G.P., and Banshchikova, T.S., Morphological Description of Gold in Placer Mine Waste at the Rivers Dzhalinda and Inagli and the Problems of the Gold Extraction, Gorn. Inform.-Analit. Byull., Special Issue, 2005.
13. Mamaev, Yu.A., Litvintsev, V.S., Ponomarchuk, G.P., and Alekseev, V.S., Development of the Theory of Placer Waste Accumulations, Gorn. Inform.-Analit. Byull., 2007, no. 16.
14. Banshchikova, T.S., Litvintsev, V.S., and Ponomarchuk, G.P., Morphological Characteristics of Gold in Mine Waste and Distribution of Gold in Mine Waste Dumps, Proc. 14th Inter. Conf. Placers and Deposits in Mantles of Waste: Present-Day Problems of Research and Development, Novosibirsk: Apelsin, 2010.
15. Litvintsev, V.S., Ponomarchuk, G.P., and Banshchikova, T.S., Resource Potential of Silt-Detention Basins at Gold Placer Mines, Proc. 14th Inter. Conf. Placers and Deposits in Mantles of Waste: Present-Day Problems of Research and Development, Novosibirsk: Apelsin, 2010.
16. Mamaev, Yu.A., Litvintsev, V.S., and Alekseev, V.S., Principles of Accumulation of Mine Waste Containing Noble Metals at the Present-Day Stage, Izv. vuzov, Gorny Zh., 2011, no. 8.
17. Litvintsev, V.S., Banshchikova, T.S., Leonenko, N.A., and Alekseev, V.S., Effective Methods for Gold Recovery from Mining Wastes at Placers, Journal of Mining Science, 2012, vol. 48, no. 1, pp. 198202.
18. Mamaev, Yu.A., Litvintsev, V.S., and Alekseev, V.S., Processes of Formation of a Productive Layer in a Noble Metal Placer Waste Accumulation, Tikhookean. Geolog., 2012, vol. 31, no. 4.
19. Litvintsev, V.S., Ponomarchuk, G.P., Banshchikova, T.S., and Shokina, L.N., RF patent no. 2340689, Byull. Izobret., 2008, no. 34.


N. N. Petrov and N. V. Panova

The authors discuss how design elements of replaceable rotatable blade ring influence its stressstrain state and natural frequency. The constructed generalized dimensionless model of adaptable blade ring assists in designing axial fans with increased rotation velocity for improved performance of main mine fans.

Adaptable blade ring, dimensionless model, stressstrain state, frequency

1. Petrov, N.N. and Kaigorodov, Yu.M., Evolution of Mine Ventilation, Avtomaticheskoe upravlenie v gornom dele (Automated Control in Mining), Novosibirsk: IGD SO AN SSSR, 1974.
2. Petrov, N.N., Higher Adaptability, Efficiency and Reliability Axial Mine Fans, Proc. 22nd World Mining Congress, Turkey, 2011.
3. Petrov, N.N., Popov, N.A., Batyaev, E.A., and Novikov, V.A., Theory and Design of Reversible Axial Fans with Turn in Motion Blades of Impeller, Journal of Mining Science, 1999, vol. 35, no. 5, pp. 519530.
4. Petrov, N.N., Popov, N.A., and Russky, E.Yu., Scientific Substantiation and Development of a New Series of Axial Fans, Journal of Mining Science, 2007, vol. 43, no. 3, pp. 300310.
5. Bezzubko, I.A., Calculation of Centrifugal Forces and Moments on the Axial Fan Blades, Progressivnoe oborudovanie shakhtnykh statsionarnykh ustanovok (Advanced Equipment of Fixed Mine Installations), Donetsk: VNIIGM im. M. M. Fedorova, 1989.
6. Krasyuk, A.M., Kozyurin, S.V., and Batyaev, E.A., Air Flow-Generated Loads on Tunnel Fan Sheet Blades, Proc. Int. Conf. Dynamics and Strength of Mining Machines, Novosibirsk, IGD SO RAN, 2001.
7. Birger, I.A., et al., Raschet na prochnost detalei mashin: spravochnik (Strength Calculation for Machine Parts: Reference Book), Moscow: Mashinostroenie, 1993.
8. Ivanov, M.N., Detali mashin: uchebnik dlya studentov vuzov (Machine Parts: Academic Institution Guide), V. A. Finogenov (Ed.), Moscow: Vyssh. shk., 2000.
9. Eltyshev, Yu.V., Kozyurin, S.V., Petrov, N.N., Popov, N.A., and Sharapov, A.G., Dynamics and Strength of Major Units in New Axial Fans for Main Mine Ventilation, Proc. Int. Conf. Dynamics and Strength of Mining Machines, Novosibirsk, IGD SO RAN, 2003.
10. Mirolyubov, I.N., et al., Posobie k resheniyu zadach po soprotivleniyu materialov (Structural Resistance Problem Solution Guidelines, Moscow: Vyssh. shk., 1967.
11. Kozyurin, S.V. and Popov, N.A., Analysis of Frequencies and Wave Modes of Double Sheet Blades on Axial Fan Impeller, Proc. Int. Conf. Energy Preparedness of Russia. New Approaches to Coal Mining Advance, Kemerovo, 2002.
12. Petrov, N.N. and Russky, E.Yu., Analysis of the Dynamic and Strength of Major Units of VO-36K, Proc. 12th Int. Symp. after Acad. M. A. Usov on Problem of Geology and Mineral Wealth Development, Tomsk: TPU, 2008.
13. Krasyuk, A.M. and Russky E.Yu., Dynamics and Strength of Doubled Sheet Blades of Axial Fans, Gorn. Oborud. Elektromekh., 2009, no. 7.
14. Krasyuk, A.M., Russky, E.Yu., and Popov, N.A., Estimating Strength of High-Loaded Impellers of Large-Size Mine Axial Fans, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 314321.

Yu. A. Khokholov and D. E. Solovev

The authors have developed a procedure for forecasting air flow, air and rock temperatures as well as thawing halo in all roadways of a mine, taking into account stage-wise introduction of new mine workings into the mine ventilation network, or backfilling of the mined-out stopes.

Thermal conditions, air distribution, ventilation network, permafrost zone

1. Dyadkin, Yu.D., Osnovy gornoi teplofiziki dlya shakht i rudnikov Severa (Basics of Mining Themophysics for Underground Mines in the North), Moscow: Nedra, 1968.
2. Tikhonov, A.N. and Samarsky, A.A., Uravneniya matematicheskoi fiziki (Mathematical Physics Equations), Moscow: Nauka, 1977.
3. Samarsky, A.A. and Moiseenko, B.D., Efficient Through-Calculation Scheme for Multi-Dimensional Stefan Problem, Zh. Vyssh. Matem. Matematich. Fiz., 1965, vol. 5, no. 5.
4. Samarsky, A.A. and Vabishchevich, P.N., Vychslitelnaya teploperedacha (Computerized Heat Transfer), Moscow: Editorial URSS, 2003.
5. Ushakov, K.Z., Burchakova, A.S., Puchkov, L.A., and Medvedev, I.I., Aerologiya gornykh predpriyatii (Mine Aerology), Moscow: Nedra, 1987.


V. A. Chanturia, T. A. Ivanova, and I. G. Zimbovsky

The article analyzes flotation and adsorption capacity of a new complexing reagent AMD (nitrogen and oxygenated organic compound belonging to phenylpyrazole class) toward sphalerite, chalcopyrite and pyrite, combined with complexing modifiers, at varied consumptions of the reagents, in wide range of alkalinity. The basis for improvement of pyrite and sphalerite separation in flotation is provided.

Selection of sulfides, adsorption of reagents, flotation, pyrite, sphalerite, extraction, reagents

1. Shubov, L.Ya. and Ivankov, S.I., Zapatentovannye flotatsionnye reagenty (Patented Flotation Reagents), Moscow: Nedra, 1992.
2. Chanturia, E.L. and Ivanova, T.A., Flotation Properties of MineralogicalTechnological Kinds of Gold-Bearing Pyrite at Gaisky Deposit, Proc. Int. Conf. Plaksins Readings2005, Moscow: Alteks, 2005.
3. Bocharov, V.A., Chanturia, E.L., and Ignatkina, V.A., Genetic Influence of Sulfide Minerals in Gold Ores on the Gold Extraction Technology, Proc. Int. Conf. Plaksins Readings2004, Moscow: Alteks, 2004.
4. Ivanova, T.A. and Chanturia, E.L., Application of Complexing Reagents to Flotation Separation of Varieties of Pyrite, Journal of Mining Science, 2007, vol. 43, no. 4, pp. 441449.
5. Cherkasova, T.G. and Katkova, O.V., Rhodanide Chelates of Transition Elements with Pyramidon, Khim. Khim. Tekhnol., 2005, vol. 48, issue 1.
6. Medvedev, Yu.N., Kuznetsov, M.L., Zaitsev, B.E., Lokshin, B.V., and Spiridonov, F.M., Formation of Anhydrous Nitrates of Lanthanides and Pyramidon, Zh. Neorganich. Khim., 1994, vol. 39, no. 9.
7. Lodzinska, A., Golinska, F., Rozploch, F., and Jesmanowicz, A., Synthesis of and Structural Investigation on Complex Salt of Cu(II) Sulfate and Perchlorate with ANT and AMF, Polish Journal of Chemistry, 1968.

E. V. Bogatyreva

Based on the analysis of estimation criteria for chemical resistance of nonferrous and rare metal minerals, it is found possible to predict properly their reactivity prior to their mechanical activation reasoning from their energy density, bond uniformity and power characteristic of cations of oxygen compounds. The authors propose relationships for determination of structural changes in noble metal minerals under mechanical activation, which ensure mineral opening in further hydrometallurgical treatment at below100?C. These relationships are useful to pre-evaluate reactivity of minerals in order to select effective mechanical activation conditions.

Mineral, nonferrous and rare metals, chemical resistance, mechanical activation

1. Pettijohn, F.J., Sedimentary Rocks, South Carolina: Harpercollins, 3rd Eed., 1983.
2. Ginzburg, A.I., Metody mineralogicheskikh issledovanii, (Processes for Mineralogical Tests. Handbook), Moscow: Nedra, 1985.
3. Berger, M.G., Sedimentologicheskaya sistema mineralov i fundamentalnye osnovy terrigennoi mineralogii (Sedimentologic Mineral System and Fundamentals of Terrigenous Mineralogy), Moscow: LENAND, 2009.
4. Cailleux, A. and Tricart, J., Initiation a l?Etude des Sables et des Galets, Paris, 1963.
5. Urusov, V.S., Energeticheskaya kristallokhimiya (Energy Crystal Chemistry), Moscow: Nauka, 1975.
6. Zuev, V.V., Energy Density of a Substance and Mineral Properties, Obog. Rud, 1998, no. 1.
7. Lidin, R.A., Andreeva, L.L., and Molochko, V.A., Konstanty neorganicheskikh veshchestv: spravochnik (Non-Organic Substance Constants. Handbook), Moscow: Drofa, 2006.
8. Kulikov, B.F., Zuev, V.V., Vainshenker, I.A., and Mitenkov, G.A., Mineralogicheskii spravochnik tekhnologa obogatitelya (Mineralogical Guide for a Mineral Processing Technician), Leningrad: Nedra, 1985.
9. Zuev, V.V., Relationship between Enthalpy of the Complex Crystal Oxide Formation and the Cation Electronegativeness Difference, Geokhim., 1986, no. 5.
10. Bulakh, A.G. and Bulakh, K.G., Fiziko-khimicheskie svoistva mineralov i komponentov gidrotermalnykh rastvorov (Physicochemical Properties of Minerals and Components of Hydrothermal Solutions), Leningrad: Nedra, 1978.
11. Vertushkov, G.N. and Avdonin, V.N., Tablitsy dlya opredeleniya mineralov po fizicheskim i khimicheskim svoistvam:spravochnik (Handbook: Mineral Indicating Tables by Physical and Chemical Properties), Moscow: Nedra, 1992.
12. Godovnikov, A.A., Mineralogiya (Mineralogy), Moscow: Nedra, 1983.
13. Povarennykh, A.S., Tverdost mineralov (Mineral Hardness), Kiev: AN USSR, 1963.
14. Goronovsky, I.T., Nazarenko, Yu.P., and Nekryach, E.F., Kratkii spravochnik po khimii (Concise Chemistry Guide), Kiev: AN USSR, 1962.
15. Bogatyreva, E.V., Ermilov, A.G., Sviridova, T. A. Savina, O.S., and Podshibyakina, K.V., The Mechanical Activation Time Effect on Reactivity of Wolframite Concentrates, Neorg. Mater., 2011, vol. 47, no. 6.
16. Bogatyreva, E.V. and Ermilov, A.G., Evaluation of the Mechanical Activation Performance for Loparite Concentrate, Neorg. Mater., 2011, vol. 47, no. 9.
17. Shelekhov, E.V. and Sviridova, T.A., Software for X-Ray Analysis of Polycrystals, Metalloved. Termich. Obrabot., 2000, no. 8.
18. Zuev, V.V., Aksenova, G.A., Mochalov, N.A., et al., Investigation into Specific Energy for Crystal Lattice of Minerals and Non-organic Crystals in Evaluating their Properties, Obog. Rud, 1999, nos. 12.
19. Maksimuk, I.E., Kassiterity i volframity (Cassiterite and Wolframite Minerals), Yushko, S.A. (Ed.), Moscow: Nedra, 1973.
20. Bogatyreva, E.V. and Ermilov, A.G., Patent Application no. 2012143267, dated October 10, 2012.
21. Bogatyreva, E.V., Chub, A.V., and Ermilov, A.G., Patent Application no. 2012112371, dated April 02, 2012.


The article presents basic magnetic characteristics of nine primary concentrates produced from Siberian magnetite ore and a lightly oxidized iron ore and supplied as a feedstock to Abagur enrichment agglomeration plant. The best magnetic properties belong to the primary concentrate produced from the magnetite ore mined at Abaza, Irba and Kaz deposits; the weakest properties characterize the lightly oxidized ore from Izykh-Gol and Krasnokamensk; the magnetic characteristics are proportional to magnetite content in a primary test specimen. Considering this, the integrated processing of lightly oxidized and magnetite ore is recommended to lower magnetite loss in tailings of Abagur plant.

Primary concentrate, magnetite ore, lightly-oxidized ore, magnetic properties

1. Bikbov, A.A. and Kryukovskaya, L.V., Magnetic Properties of Intermediate Magnetite Products, Obog. Rud, 1974, no. 5.
2. Kilin, V.I. and Yakubailik, E.K., Investigation into Magnetic Properties and Processes of Separation of Abakan Magnetites, Journal of Mining Science, 2002, vol. 38, no. 5, pp. 506–511.
3. Kilin, V.I., Yakubailik, E.K., Kostenenko, L.P., and Ganzhenko, I.M., Dressability of Abagas Hematite-Magnetite Ores, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 363–368.
4. Issledovanie protsessov magnitnoi separatsii trudnoobogatimykh rud Abagasskogo mestorozhdeniya i opredelenie magnitnykh kharakteristik produktov Abagurskoi fabriki s tselyu ikh flokulirovaniya (Investigation into the Magnetic Separation Processes for Abagass Rebellious Ores and Evaluation of Magnetic Characteristics of Abagur Plant Products in Order to Study Their Flocculation Feasibility), Research Report, Krasnoyarsk: L. V. Kirensky Institute of Physics, Siberian Branch, Russian Academy of Sciences, 2007.
5. Lomovtsev, L.A., Nesterova, N.A., and Drobchenko, L.A., Magnitnoe obogashchenie silnomagnitnykh rud (Magnetic Separation of Strongly Magnetic Ores), Moscow: Nedra, 1979.
6. Balaev, A.D., Boyarshinov, Yu.V., Karpenko, M.M., and Khrustalev, B.P., Automated Superconductive-Solenoid Magnetometer, Prav. Tekhn. Ekspl. 1985, vol. 3.
7. Rychkov, L.F. and Lomovtsev, L.A., Specific Magnetic Susceptibility of Strongly Magnetic Ores at Different Magnetic Field Intensity, Journal of Mining Science, 1978, vol. 14, no. 6, pp. 623–625.


G. V. Kalabin, T. I. Moiseenko, V. I. Gorny, S. G. Kritsuk, and A. V. Soromotin

The currentness of space data application in local and regional real-time estimation of the natural environment state in a mining area is substantiated in the article. The authors give and analyze satellite measurements of the natural environment in a mining area in terms of Olimpiada gold open-cut mine, the Krasnoyarsk Territory.

Mining entities, mineral resources management, estimation of natural environment state, mining impact, satellite monitoring, normalized difference vegetation index (NDVI)

1. Kalabin, G.V., Typification of General Plans of Open Mines and Evaluation of Their Ecological Characteristics, Marksheider. Nedropolz., 2012, no. 3.
2. Olimpiada Gold Deposit, http://mestor.geoinfocom.ru/publ/1–1-0–36 
3. Polyus Gold Company, http://www.yarsk.ru/dosie
4. Project of Olimpiada Gold Ore Deposit, http://www.bestreferat/ru/ referat. html
5. Polyus. Annual report-2010, http://www.polyusgold.ru/reportes
6. Prirodnye resursy i ekologiya Rossii (Natural Resources and Ecology in Russia. Russian Federation Atlas), Moscow, 2002.
7. http://ladsweb.nascom.nasa.gov/data/
8. http://www.cgiar-csi.org/data/elevation/item/45-srtm-90m-digital-elevation-database-v41.
9. http://terranorte.iki.rssi.ru/onlinegis/html/viewer.php?q=1 
10. Kalabin, G.V., Quantitative Assessment Procedure for Environmental Conditions in the Mining and Processing Industry Areas, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 382–389.

T. N. Aleksandrova, L. N. Lipina, and N. I. Grekhnev

In terms of Mnogovershinny gold and silver mine, the authors have made geological estimation of mining impact on natural environment using geoinformation technologies. The influence area of the mineral mining and processing has been zoned based on the complex air pollution index using earth remote sensing methods.

Mining and processing integrated works, geoecological estimation, geoinformation technologies, complex air pollution index

1. Zvereva (Postnikova), V.P., Ecological After-Effects of Technogenesis at Tin Deposits of the Far East, Rudnye mestorozhdeniya kontinentalnykh okrain (Ore Deposits of Continental Margins), Vladivostok: Dalnauka, 2000.
2. Mamaev, Yu.A., Krupskaya, L.T., and Saksin, B.G., Environmental Control Action of Biota and Arrangement of Biological Research in the Framework of Natural-and-Mine Engineering Systems, Gorn. Inform.-Analit. Byull., 2005, no. 3.
3. Aleksandrova, T.N., Lipina, L.N., and Krupskaya, L.T., Assessment of Ecological Impact and Nature-and-Mine Engineering System in Gold Mining, Gorn. Inform.-Analit. Byull., 2010, no. 6.
4. Trubetskoy, K.N., Galchenko, Yu.P., Grekhnev, N.I., et al., Basic Line of Ecological Management of Mineral Resources in the Far East, Geoekolog., Inzh. Geolog., Gidrogeolog., Geokriolog., 2009, no. 6.
5. Elpatevskaya, E.P., Soil-Forming in Sulfide Mine Dumps on the Southern Far East, Pochvoved., 1995, no. 2.
6. Saksin, B.G., Krupskaya, L.T., and Ivlev, A.M., Regionalnaya ekologiya gornogo proizvodstva (Regional Ecology in Mining Practice), Khabarovsk: IGD DVO RAN, 2001.
7. Bezuglaya, E.Yu., Kachestvo vozdukha v krupneishikh gorodakh Rossii za 10 let (19982007): analiticheskii obzor (Air Quality in the Largest Cities in Russia for 10 Years (19982007): Analytical Review), Saint-Petersburg: GU GGO, Rosgidromet, 2009.
8. GOST RF № 2438–2005. Geograficheskie informatsionnye sistemy (RF State Standard no. 2438–2005. Geographical Information Systems).
9. Mirzekhanova, Z.G., Ekologo-geograficheskaya ekspertiza territorii (vzglyad s pozitsii ustoichivogo razvitiya) (EcologicalGeographical Expertise of Natural Area from the Viewpoint of the Sustained Development), Khabarovsk: Dalnauka, 2000.
10. Lipina, L.N. and Aleksandrova, T.N., Geoenvironmental Assessment of the Status of Lands by Map Data Interpretation in Terms of the Nikolaevsky District in the Khabarovsk Territory, Proc. 2nd Int. Environmental Cong. ELPIT 2009, Tolyatti: TGU, 2009.
11. Aleksandrova, T.N., Galchenko, Yu.P., and Lipina, L.N., Natural Ecosystem Preservation in Gold Mining in the Far East, Ekol. Sist. Pribor., 2011, no. 1.
12. Aleksandrova, T.N. and Lipina, L.N., Geoecological and Technological Effects of Gold Mining Refuses, Ekol. Sist. Pribor., 2011, no. 10.
13. Operating Instructions 3DEM Software for Terrain Visualization and Flyby Animation Version 20, Internet-resource: http://www.visualizationsoftware.com/3dem.html.
14. Saet, Yu.E., Revich, B.A., Yanin, E.P., et al., Geokhimiya okruzhayushchei sredy (Geochemistry of the Environment), Moswcow: Mysl, 1990.

image not found   ( )
Rambler's Top100   @Mail.ru

. .. 
: 630091, , , , 54
: +7 (383) 205–30–30, . 100 ()
: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© . ..  , 2004–2020.