Rambler's Top100
  « »                 
 »  » «- … »  » 2013  » JMS, Vol. 49, No. 3, 2013

JMS, Vol. 49, No. 3, 2013


GEOMECHANICS


MECHANICALELECTROMAGNETIC TRANSFORMATIONS IN ROCKS ON FAILURE
V. N. Oparin, G. E. Yakovitskaya, A. G. Vostretsov, V. M. Seryakov, and A. V. Krivetsky

The authors present energy estimations of mechanicalelectromagnetic transformations in rock specimens under compression that can be of use to diagnosing rockburst hazard rate in underground mines.

Rock failure, electromagnetic emission, deformation characteristics of specimens, mechanical-and-electromagnetic transformation coefficient

REFERENCES
1. Vorobev, A.A., Zavadovskaya, E.K., and Salnikov, V.N., Change of Conductance and Radio Emission in Rocks and Minerals due to Internal Physicochemical Processes, Dokl. Akad. Nauk, 1975, vol. 220, no. 1.
2. Gokhberg, M.B. (Ed.), Poisk elektromagnitnykh predvestnikov zemletryasenii (Search for Electromagnetic Indications of an Earthquake), Moscow: IFZ AN SSSR, 1988.
3. Oparin, V.N., Recent Discoveries in Geomechanics and Their Application Prospects, Proc. Sci. Conf. Geodynamics and Stress State of the Earths Interior, Novosibirsk: IGD SO RAN, 2008.
4. Oparin, V.N. and Simonov, B.F., Nonlinear Deformation-Wave Processes in the Vibrational Oil Geotechnologies, Journal of Mining Science, 2010, vol. 46, no. 2, pp. 95112.
5. Adushkin, V.V. and Oparin, V.N., From Alternating-Sign Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part I, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 203222.
6. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale of Hierarchy Representation in the Science of Rocks), Novosibirsk: Nauka, 2011.
7. Kurlenya, M.V., Oparin, V.N., Revuzhenko, A.F., and Shemyakin, E.I., Specific Response of Rocks to Near-Field Blasting, Dokl. Akad. Nauk, 1987, vol. 293, no. 1.
8. Kurlenya, M.V., Adushkin, V.V., Garnov, V.V., Oparin, V.N., and Spivak, A.A., Alternating-Sign Response of Rocks to Dynamic Impacts, Dokl. Akad. Nauk, 1992, vol. 323, no. 2.
9. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Generation of Elastic Wave Packets under Pulsed Treatment of Block Media. Pendulum Waves ??, Dokl. Akad. Nauk, 1993, vol. 333, no. 4.
10. Oparin, V.N., Energy Criterion of Bulk Destruction in Rocks, Proc. Miners Week-2009, Moscow: MGGU, 2009.
11. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part II: Experimental Methods and Main Results of Physical Modeling, Journal of Mining Science, 1996, vol. 32, no. 4, pp. 245273.
12. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Pendulum-Type Waves. Part III: Data of On-Site Observations, Journal of Mining Science, 1996, vol. 32, no. 5, pp. 343361.
13. Yakovitskaya, G.E., Metody i tekhnicheskie sredstva diagnostiki kriticheskikh sostoyanii gornykh porod na osnove elektromagnitnoi emissii (Methods and Means of Critical State Diagnostics in Rocks Based on Electromagnetic Emission), V.N., Oparin (Ed.), Novosibirsk: Parallel, 2008.
14. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Geomechanical Conditions for Quasi-Resonances in Geomaterials and Block Media, Journal of Mining Science, 1998, vol. 34, no. 5, pp. 379386.
15. Kurlenya, M.V., Oparin, V.N., Akinin, A.A., Yushkin, V.F., et al., On Some Features of Evolution of Harmonic Acoustic Signals in Loading Block Media with a Cylindrical Cavity, Journal of Mining Science, 1999, vol. 35, no. 6, pp. 566586.
16. Oparin, V.N., Pendulum Waves and Geomechanical Temperature, Proc. 2nd RussiaChina Forum Nonlinear GeomechanicalGeodynamic Processes in Deep-Level Mineral Mining, Novosibirsk: IGD SO RAN, 2012.
17. Sadovsky, M.A., Kedrov, O.K., and Pasechnik, I.P., Seismic Energies of at Source Sites of Crustal Quakes and Underground Explosions, Dokl. Akad. Nauk, 1985, vo. 283, no. 5.
18. Khatiashvili, N.G. and Perelman, M.E., Electromagnetic Emission Generation on Oscillation of Double Electric Layers and EME Shows during Earthquakes, Dokl. Akad. Nauk, 1983, vol. 211, no. 1.
19. Gokhberg, M.B., Morgunov, V.A., and Pokhotelov, O.A., Seismoelektromagnitnye yavleniya (SeismicElectromagnetic Phenomena), Moscow: Nauka, 1988.
20. Golovin, Yu.I. and Shibkov, A.A., Quick Electric Processes in Yielding Alkyl Halide Crystals, Fiz. Tverd. Tela, 1987, vol. 28, no. 11.
21. Gershenzon, N.I., Zilpimiani, D.O., Mandzhgaladze, P.V., et al., Electromagnetic Emission at Fracture Tip in Ion Crystals, Dolk. Akad. Nauk, 1986, vol. 288, no. 1.
22. Ogawa, T., Analysis of Measurement Techniques of Electric Fields and Currents in the Atmosphere, Contributions of Geophysical Institute, Kyoto University, 1973, no. 13.
23. Borovikov, A.K. and Ritter, Yu.A., Influence of StressStress State on Electromagnetic Emission Spectra in Piezo-Composite Materials, Protsessy elektroperenosa i elektrofizika neodnorodnykh tel: tez. dokl. (Electromigration and Electrophysics of Heterogeneous Bodies: Synopsis of Papers), Moscow, 1988.
24. Sadovsky, M.A., Sobolev, G.A., and Migunov, M.I., Change in the Natural Radiowave Emission under Strong Earthquake in the Carpathian Mountains, Dokl. Akad. Nauk, 1979, vol. 224, no. 2.
25. Kuznetsov, S.V., Joint Electromagnetic and Seismic Emission Recording, Geofizicheskie sposoby kontrolya napryazhenii i deformatsii: sb. nauch. tr. (Geophysical Methods of Stress and Strain Control: Collected Papers), Novosibirsk: IGD SO RAN SSSR, 1985.
26. Korneichikov, V.P., Electromagnetic Emission in Rocks with a View to Predicting Earthquakes, Cand. Sci. (Phys.-Math.) Dissertation, Moscow, 1984.
27. Gufeld, I.L., Nikiforova, N.N., Rozhnoi, A.A., Yakovitskaya, G.N., et al., Characteristic of Electromagnetic Emission Sources in Rocks, Napryazhennodeformirovannoe sostoyanie massivov gornykh porod: sb. nauch. tr. (StressStrain State of Rock Masses: Collected Papers), Novosibirsk: IGD SO AN SSSR, 1988.
28. Ukazaniya po beskontaktnym geofizicheskim metodam prognoza stepeni udaroopasnosti uchastkov ugolnykh plastov i rudnykh zalezhei (Guidelines on Noncontact Geophysical Methods for Forecasting of Rockburst Hazard Degree in Coal and Ore Bodies), Leningrad: VNIMI, 1981.
29. Instruktsiya po bezopasnomy vedeniyu gornykh rabot na rudnykh i nerudnykh mestorozhdeniyakh (Instruction on Safe Mining of Rockburst-Hazardous Metalliferrous and Nonmetalliferrous Deposits), Leningrad: VNIMI, 1981.
30. Landau, L.D. and Lifshits, E.D., Elektrodinamika sploshnykh sred (Continuum Electrodynamics), Moscow: TEL, 1957.
31. Koshkin, N.I. and Shirkevich, M.G., Spravochnik po elementarnoi fizike (Elementary Physics Reference), Moscow: Nauka, 1975.
32. Egorov, P.V., Ivanov, V.V., and Kolpakova, L.A., Patterns in the Electromagnetic Pulsed Radiation in Alkali Halide Crystals and Rocks, Journal of Mining Science, 1988, vol. 24, no. 1, pp. 5861.
33. Stavrogin, A.N. and Protosenya, A.G., Plastichnost gornykh porod (Plasticity of Rocks), Moscow: Nedra, 1979.
34. Kolpakova, L.A., Kinetics and Parameters of Electromagnetic Emission on Alteration of Stress State in Rocks, Cand. Sci. (Eng.) Dissertation. Novosibirsk: IGD SO AN SSSR, 1988.
35. Zhurkov, S.N., Kuksenko, V.S., and Petrov, V.A., Basic Physics of Disintegration Prediction, Dokl. Akad. Nauk, 1981, vol. 259, no. 6.
36. Perelman, M.E. and Khatiashvili, N.G., Radioradiation on Failure of Dielectric Materials, Dokl. Akad. Nauk, 1981, vol. 259, no. 4.
37. Kurlenya, M.V., Vostretsov, A.G., Kulakov, G.I., and Yakovitskaya, G.E., Registratsiya i obrabotka signalov elektromagnitnogo izlucheniya gornykh porod (Recording and Processing of Electromagnetic Emission Signals in Rocks), Novosibirsk: SO RAN, 2000.
38. Gokhberg, M.B., Morgunov, V.A., Gerasimovich, E.A., and Matveev, I.V., Operativnye elektromagnitnye predvestniki zemletryasenii (Prompt Electromagnetic Forerunners of Earthquakes), Moscow: Nauka, 1985.
39. Yakovitskaya, G.E., Metod elektromagnitnogo izlucheniya dlya diagnostiki, kontrolya i prognoza gornykh udarov i mikrozemletryasenii v massivakh gornykh porod (Electromagnetic Emission Method to Detect, Control and Predict Rockbursts and Micro-Quakes in Rock Masses), Saarbrucken: LAP Lambert Academic Publishing AG & Co. KG, 2011.
40. Shrepp, B.V., Geomechanical Control in Thick Rockburst-Hazardous Ore Mining by Changing Geometry of Mined-Out Voids, Doctorate (Eng.) Dissertation, Novosibirsk: IGD SO RAN, 1996.


A SPATIAL STRAIN LOCALIZATION MECHANISM OF ZONAL DISINTEGRATION THROUGH NUMERICAL SIMULATION
X. Wang, Y. Pan, and Z. Zhang

The zonal disintegration is studied from a viewpoint of the spatial strain localization, a prospective idea to tackle the problem. The three-dimensional loading and unloading models are modeled numerically based on a strain-softening heterogeneous constitutive model. In the loading model, after a cylindrical tunnel is excavated, the displacement-controlled loading is conducted in the direction of the tunnel axis. However, in the unloading model, after the model has reached a static equilibrium state, a cylindrical tunnel is excavated step by step. In loading and unloading conditions, numerical results reveal that the zonal disintegration phenomenon that annular regions with high shear strains are isolated or divided by those with lower shear strains is existent. Compared with results in the loading model, results in the unloading model are even consistent with the field observations. At a plane orthogonal to the tunnel axis, the regions with higher shear strains, far away from the tunnel surface, are formed by propagation of shear bands that do not originate from the plane.

Zonal disintegration, three-dimensional model, loading model, unloading model, spatial strain localization, shear band, tunnel, heterogeneity

REFERENCES
1. Shemyakin, E.I., Fisenko, G.L., Kurlenya, M.V., Oparin, V.N., et al., Zonal Disintegration of Rocks around Underground Workings. Part I: Data of In-Situ Observations, Journal of Mining Science, 1986, vol. 22, no. 3, pp. 157168.
2. Shemyakin, E.I., Fisenko, G.L., Kurlenya, M.V., Oparin, V.N., et al., Zonal Disintegration of Rocks around Underground Workings. Part II: Fracturing of Rocks on Models of Equivalent Materials, Journal of Mining Science, 1986, vol. 22, no. 4, pp. 223232.
3. Shemyakin, E.I., Fisenko, G.L., Kurlenya, M.V., Oparin, V.N., et al., ZonalDdisintegration of Rocks around Underground Mines. Part III: Theoretical Concepts, Journal of Mining Science, 1987, vol. 23, no. 1, pp. 16.
4. Shemyakin, E.I., Oparin, V.N., Kurlenya, M.V., Reva, V.N., et al., Zonal Disintegration of Rocks around Underground Workings. Part IV: Practical Applications, Journal of Mining Science, 1989, vol. 25, no. 4, pp. 297302.
5. Oparin, V.N., Nonlinear Mechanics Properties in Deep Mining, Journal of Liaoning Technical University (Natural Science), 2009, vol. 28, no. 5.
6. Odintsev, V.N., Mechanism of the Zonal Disintegration of a Rock Mass in the Vicinity of Deep-Level Working, Journal of Mining Science, 1994, vol. 30, no. 4, pp. 334343.
7. Gusev, M.A. and Paroshin, A.A., Non-Euclidian Model of the Zonal Disintegration of Rocks around an Underground Working, Applied Mechanics and Technical Physics, 2001, vol. 42, no. 1.
8. Oparin, V.N. and Kurlenya, M.V., Gutenberg Velocity Section of the Earth and Its Possible Geomechanical Explanation. Part I: Zonal Disintegration and the Hierarchical Series of Geoblocks, Journal of Mining Science, 1994, vol. 30, no. 2, pp. 97108.
9. Chanyshev, A.I., To the Problem of Deformable Medium Failure. Part I: Basic Equations, Journal of Mining Science, 2001, vol. 37, no. 3, p. 273288.
10. Metlov, L.S., Morozov, A.F., and Zborshchik, M.P., Physical Foundations of Mechanism of Zonal Rock Failure in the Vicinity of Mine Working, Journal of Mining Science, 2002, vol. 38, no. 2, pp. 105155.
11. Reva, V.N., Stability Criteria of Underground Workings under Zonal Disintegration of Rocks, Journal of Mining Science, 2002, vol. 38, no. 1, pp. 3134.
12. Protosenya, A.G., Arkhipov, M.N., and Trushko, V.L., Dynamic-Stress Concentration around Workings of Different Configuration under Nonstationary Seismic Waves, Journal of Mining Science, 1990, vol. 26, no. 4, pp. 308315.
13. Zhou, X.P., Wang, F.H, Qian, Q.H., et al., Zonal Fracturing Mechanism in Deep Crack-Weakened Rock Masses, Theoretical and Applied Fracture Mechanics, 2008, vol. 50, no. 1.
14. Qian, Q.H., The Characteristic Scientific Phenomena of Engineering Response to Deep Rock Mass and the Implication of Deepness, Journal of East China Institute of Technology, 2004, vol. 27, no. 1.
15. Qi, C.Z., Qian, Q.H., Wang, M.Y., Evolution of the Deformation and Fracturing in Rock Masses near Deep Level Tunnels, Journal of Mining Science, 2009, vol. 45, no. 2, pp. 112119.
16. Wang, M.Y., Qi, C.Z., Qian, Q.H., et al., One Plastic Gradient Model of Zonal Disintegration of Rock Mass near Deep Level Tunnels, Journal of Mining Science, 2012, vol. 48, no. 1, pp. 4654.
17. Gu, J.C., Gu, L.Y., Chen, A.M., et al., Model Test Study on Mechanism of Layered Fracture within Surrounding Rock of Tunnels in Deep Stratum, Chinese Journal of Rock Mechanics and Engineering, 2008, vol. 27, no. 3.
18. Qian, Q.H. and Zhou, X.P., Non-Euclidean Continuum Model of the Zonal Disintegration of Surrounding Rocks around a Deep Circular Tunnel in a Non-Hydrostatic Pressure State, Journal of Mining Science, 2011, vol. 47, no. 1, pp. 3746.
19. He, Y.N., Jiang, P.S., Han, L.J., et al., Study of Intermittent Zonal Fracturing of Surrounding Rock in Deep Roadways, Journal of China University of Mining & Technology, 2008, vol. 37, no. 3.
20. Li, S.C., Wang, H.P., Qian, Q.H., et al., In-Situ Monitoring Research on Zonal Disintegration of Surrounding Rock Mass in Deep Mine Roadways, Chinese Journal of Rock Mechanics and Engineering, 2008, vol. 27, no. 8.
21. Tang,C.A. and Zhang, Y.B., Discussion on Mechanism and Evolution Laws of Fracture Spacing in Rock Mass, Chinese Journal of Rock Mechanics and Engineering, 2008, vol. 27, no. 7.
22. Zhang, Z.H., Wang, X.B., and Pan, Y.S., Experiment on Utilizing Multi-Kinds of Similar Materials to Simulate Zonal Disintegration Phenomenon, Journal of Water Resources & Water Engineering, 2011, vol. 22, no. 3.
23. Li, S.C., Feng, X.D., Li, S.C., et al., Numerical Simulation of Zonal Disintegration for Deep Rock Mass, Chinese Journal of Rock Mechanics and Engineering, 2011, vol. 30, no. 7.
24. Wang, X.B. and Pan, Y.S., Theory of Stability of Rock Structures and Numerical Simulation of Failure Process, Cultivation in Mechanics and Engineering Sciences (in Chinese), Taiyuan: Shanxi Science and Technology Press, 2009.
25. Wang, X.B. and Pan, Y. S. Preliminary Failure Process Modeling of Strain-Softening Rocks with Heterogeneity and Stiffness Deterioration, Proc. 3rd Int. Symp. Modern Mining & Safety Technology Proceedings, Beijing: Coal Industry Publishing House, 2008.
26. Wang, X.B., Ma, J., and Liu, L.Q., Numerical Simulation of Failed Zone Propagation Process and Anomalies Related to the Released Energy during a Compressive Jog Intersection, Journal of Mechanics of Materials and Structures, 2010, vol. 5, no. 6.
27. Wang, X.B., Ma, J., and Liu, L.Q., A Comparison of Mechanical Behavior and FrequencyEnergy Relations for Two Kinds of Echelon Fault Structures through Numerical Simulation, Pure and Applied Geophysics, to be published.
28. Wang, X.B. and Zhang, J., Numerical Simulation of Failure Process of Three-Point Bending Concrete Beam Considering Heterogeneity of Tensile Strength and Post-Peak Softening Curve, Engineering Mechanics, 2009, vol. 26, no. 12.
29. Wang, X.B., Pan, Y.S., Sheng, Q., et al., Numerical Simulation on Strain Localization of End Constraint of Rock Specimen, Journal of Engineering Geology, 2002, vol. 10, no. 3.
30. Wang, X.B., Numerical Simulation of Failure Processes and Acoustic Emissions of Rock Specimens with Different Strengths, Journal of Beijing University of Science and Technology, 2008, vol. 30, no. 8.
31. Wang, X.B., Numerical Simulation of Failure Precursor and Shear Bands for Rock Specimens with Random Material Imperfections, Chinese Journal of Underground Space and Engineering, 2007, vol. 3, no. 6.


THE NON-EUCLIDEAN MODEL OF FAILURE OF THE DEEP ROCK MASSES UNDER THE DEFORMATION INCOMPATIBILTY CONDITION
X. Zhou and Q. Qian

The deep rock masses are considered as granular materials containing uniform distribution of defects. Defects in the deep rock masses are characterized by the damage variable. The damage variable of the deep rock masses is determined using MoriTanakas method and Sidoroffs method, which consider the interaction among microcracks. Effect of the pre-existing microcracks and secondary microcracks on scalar curvature and the free energy density is investigated. A new non-Euclidean mode is established, considering effect of the pre-existing microcracks and secondary microcracks. Contributions of pre-existing microcracks and secondary microcracks to the self-equilibrated stresses are derived from the free energy and the deformation incompatibilty condition. The stress fields of the surrounding rock masses around a deep circular tunnel are determined from a new non-Euclidean model.

Defects, damage variable, self-equilibrated stresses, new non-Euclidean model, deep rock masses, pre-existing microcracks, secondary microcracks

REFERENCES
1. Guzev, M.A., Structure of Kinematic and Force Fields in the Riemannian Continuum Model, J. Appl. Mech. Tech. Phys., 2011, vol. 52, no. 5.
2. Guzev, M.A. and Myasnikov, V.P., Thermomechanical Model of an Elastic-Plastic Material with Structural Defects, Izv. RAN, Mekh. Tverd. Tela, 1998, no. 4.
3. Myasnikov, V.P. and Guzev, M.A., Non-Euclidean Model of Deformation of Materials at Different Structural Levels, Fiz. Mezomekh., 2000, vol. 3, no. 1.
4. Myasnikov, V.P. and Guzev, M.A., Geometric Model of Internal Self-Equilibrated Stresses in Solids, Dokl. RAN, 2001, vol. 380, no. 5.
5. Guzev, M A. and Paroshin, A.A., Non-Euclidean Model of the Zonal Disintegration of Rocks around an Underground Working, Journal of Applied Mechanics and Technical Physics, 2001, vol. 42, no. 1.
6. Qian, Q.H. and Zhou, X.P., Non-Euclidean Continuum Model of the Zonal Disintegration of Surrounding Rocks around a Deep Circular Tunnel in a Non-Hydrostatic Pressure State, Journal of Mining Science, 2011, vol. 47, no. 1, pp. 37–46.
7. Qian, Q.H. and Zhou, X.P., Effects of the Axial In-Situ Stresses on the Zonal Disintegration Phenomenon in the Surrounding Rock Masses around a Deep Circular Tunnel, Journal of Mining Science, 2012, vol. 48, n0 2, pp. 276285.
8. Zhou, X.P., Chen, G., and Qian, Q.H., Zonal Disintegration Mechanism of Cross-Anisotropic Rock Masses around a Deep Circular Tunnel, Theor. Appl. Fracture Mech., 2012, vol. 57, no. 1.
9. Godunov, S.K. and Romensky, E.I., Elements of Continuum Mechanics and Conservation Laws, Dordrecht: Kluwer Acad. Publ., 2003.
10. Dubrovin, B.A., Novikov, S.P., and Fomenko, A.T., Modern Geometry: Methods and Applications, Moscow: Nauka, 1986.
11. Benvensite, Y., On the MoriTanakas Method in Cracked Solids, Mechanics Research Communications, 1986, vol. 13, no. 4.
12. Sidoroff, F., Description of Anisotropic Damage Application to Elasticity, Proc. IUTAM Colloquium, Physical Nonlinearities in Structural Analysis, 1981.


ROCK DESTRUCTION BY TENSION
V. E. Mirenkov

The article describes a procedure proposed for solving inverse problems on identification of flat specimen fracture by tension using in situ displacements and acoustic emission. Weak associated area with concentration of pores is modeled by a mathematical cut with lengthwise averaged normal tensile stresses. In places with high concentration of pores, Youngs modulus is degraded, i.e. strains arise here and cause shear stresses. The latter are calculated by successive approximations of solutions of direct problems by specimen contour displacements and data on acoustic emission. In principle, under consideration are inverse problems of the continuum mechanics.

Pores, destruction, rock block, equation, boundary conditions, stresses, displacements, acoustic emission, inverse problems

REFERENCES
1. Mirenkov, V.E. and Krasnovsky, A.A., Damage Accumulation in Piecewise-Homogenous Rock Block under Compression, Journal of Mining Science, 2012, vol. 48, no. 4, pp. 622628.
2. Mirenkov, V.E., Ill-Posed Problems in Geomechanics, Journal of Mining Science, 2011, vol. 47, no. 3, pp. 283289.
3. Uzhik, G.V., Assessment of Cleavage Fracture Resistance of Materials, Izv. AN SSSR. OTN, 1948, no. 10.
4. Perzyna, P. and Pecherski, R.B., Analysis of Strain Rate Effects on Ductile Fracture of Metals, Arch. Mechanics, 1983, vol. 35.
5. Roy, G.L., Embury, J.D., Edward, G., and Ashby, M.F., A Model of Ductile Fracture Based on the Nucleation and Growth of Voids, Acta Metall., 1981, vol. 29.
6. Shcherbakov, I.P., Kuksenko, V.S., and Chmel, A.E., Acoustic Emission Accumulation Stage in Compression and Impact Rupture of Granite, Journal of Mining Science, 2012, vo. 48, no. 4, pp. 656659.
7. Mirenkov, V.E., Modeling Deformation of Rock Specimens, Gorn. Inform.-Analit. Byull., 2009, no. 11.
8. Mirenkov, V.E., On Probable Failure of an Undercut Rock Mass, Journal of Mining Science, 2009, vol. 45, no. 2, pp. 105111.
9. Shemyakin, E.I., Fisenko, L.G., Kurlenya, M.V., Oparin, V.N., et al., Phenomenon of Rock Disintegration around Underground Excavations, Dokl. Akad. Nauk SSSR, 1986, vol. 289, no. 5.
10. Oparin, V.N., Tapsiev, A.P., Rozenbaum, M.A., et al., Zonalnaya dezintegratsiya gornykh porod i ustoichivost podzemnykh vyrabotok (Zonal Disintegration of Rocks and Stability of Underground Excavations), Novosibirsk: SO RAN, 2008.
11. Usoltseva, O.M., Nazarova, L.A., Tsoi, P.A., Nazarov, L.A., and Semenov, V.N., Genesis and Evolution of Discontinuities in Geomaterials: Theory and Laboratory Experiment, Journal of Mining Science, 2013, vol. 49, no. 1, pp. 17.


NANO-RANGE MECHANICAL CHARACTERISTICS OF CARNALLITE, SPATHIC SALT AND SYLVITE
V. N. Aptukov, V. Yu. Mitin, N. E. Moloshtanova, and I. A. Morozov

The authors discuss experimental nano-indentation results obtained on carnallite, spathic salt and sylvite grains on Dimension ICON scanning probe microscope, as well as comparative assessments of elasticity modulus and hardness of the minerals.

Carnallite, spathic salt, sylvite, elasticity modulus, hardness, nano-range

REFERENCES
1. Proskuryakov, N.M., Permyakov, R.S., and Chernikov, A.K., Fiziko-mekhanicheskie svoistva solyanykh porod (Physico-Mechanical Properties of Salt Rocks), Leningrad: Nedra, 1973.
2. Trubetskoy, K.N., Viktorov, S.D., Galchenko, Yu.P., and Rodintsev, V.N., Technogeneous Mineral Nano Particles as the Problem of Mineral Exploitation, Vestn. RAN, 2006, vol. 76, no. 4.
3. Aptukov, V.N., Konstantinova, S.A., and Skachkov, A.P., Micromechanical Characteristics of Carnallite, Sylvinite and Rock Salt at Upper Kama Deposit, Journal of Mining Science, 2010, vol. 46, no. 4, pp. 352358.
4. Aptukov, V.N., Konstantinova, S.A., Mitin, V.Yu, and Skachkov, A.P., Nano- and Micro-Range Mechanical Characteristics of Sylvinite Grain, Journal of Mining Science, 2012, vol. 48, no. 3, pp. 429435.
5. http://www.bruker-axs.com/dimension-icon_atomic_force_microscope.
6. Lazarenko, E.K., Kurs mineralogii (Mineralogy Course), Moscow: Vyssh. shk., 1963.
7. Povarennykh, A.S., Kristallokhimicheskaya klassifikatsiya mineralnykh vidov (Crystal-Chemical Classification of Mineral Types), Kiev: Naukova dumka, 1966.


ELECTRICAL TOMOGRAPHY-BASED IMAGING OF MINERAL DEPOSITS WITH COMPLEX GEOLOGY
I. Yu. Rasskazov, G. N. Shkabarnya, and N. G. Shkabarnya

The options of electrical tomography in studying complex-structure geological profiles of coal deposits are examined using mathematical modeling of electrical fields in heterogeneous media. The modeling results show regular patterns of electrical fields distribution, which are used to interpret in situ data to build reference models aimed at defining shapes, sizes, occurrence conditions and physical properties of mineral deposits in weak-differentiated media. The study is illustrated by experimental research of a lignite coal field.

Electrical tomography, resistivity method, mathematical modeling, geoelectric profiles, lignite coal field

REFERENCES
1. Griffiths, D.H. and Barker, R.D., Two-Dimensional Resistivity Imaging and Modeling in Areas of Complex Geology, J. Appl. Geophysics, 1993, vol. 29.
2. Kenma, A., Binley, A., Ramirez, A., and Daily, W., Complex Resistivity Tomography for Environmental Applications, Chemical Engineering Journal, 2000, vol. 77.
3. Dahlin, T., The Development of DC Resistivity Imaging Techniques, Comp.&Geosci., 2001, vol. 27.
4. Sedykh, A.K., Kainozoiskie riftogennye vpadiny Primorya (Cainozoic Rift Troughs in the Primorski Krai), Vladivostok: Dalnauka, 2008.
5. Myasnik, V.Ch., Kalinin, I.V., Shkabarnya, N.G., and Shkabarnya, G.N., Electric Tomography Approach to Structure and Tectonics of Open-Cast Coal Mines, Gorny Zh., 2006, no. 12.
6. Shkabarnya, N.G., Agoshkov, A.I., Shkabarnya, G.N., Myasnik, V.Ch., and Kalinin, I.V., Electric Exploration Method Capacities in Studying Mining-Induced Landslides in Opencast Mines, Gorn. Inform.-Analit. Byull., 2007, special issue no. 9.
7. Svetov, B.S. and Berdichevsky, M.N., Modern Electric Exploration, Geofizika, 1998, no. 2.
8. Shkabarnya, G.N. and Shkabarnya, N.G., Basis for New Electric Tomography Technique in Coal Exploration, Gorn. Inform.-Analit. Byull., 2007, special issue no. 9.
9. Khmelevsky, V.K. and Bondarenko, V.M., Elektrorazvedka: spravochnik geofizika (Electric Exploration: Geoscientists Manual), Moscow: Nedra, 1989.
10. Shkabarnya, G.N. and Shkabarnya, N.G., Electric Tomography-Based Structural Model of Landslide Pitwalls, Gorn. Inform-Analit. Byull., 2009, special issue no. 4.
11. Loke, M.H., Acworth, I., and Dahlin, T.A., Comparison of Smooth and Blocky Inversion Methods in 2D Electrical Imaging Surveys, Exploration Geophysics, 2003, vol. 34.


MODERN CONCEPT OF BLOCK HIERARCHY IN THE STRUCTURE OF GEOMEDIUM AND ITS IMPLICATIONS IN GEOSCIENCES
A. V. Vikulin and A. G. Ivanchin

The article discusses and extends the known concept on higher of blocks in the structure of geomedium by PeiveSadovsky. It is shown that interaction of structural geoblocks generates force moment. This allows construction of rotation model of geomedium, assumption of the existence of rotation waves and explanation of rheidity properties of geomedium. It appears that representative values of rotation wave velocities are close to the velocities of pendulum waves (-waves by Oparin).

Geomedium, stresses with force moment, rotation waves, rheidity, pendulum waves

REFERENCES
1. Feynman, R.P., Leighton, R.B., and Sands, M., Lectures of Physics, Wesley Publishing Company, 1964.
2. Peive, A.V., Tectonics and Magmatism, Izv. AN SSSR, Series: Geology, 1961, no. 3.
3. Sadovsky, M.A., Geofizika i fizika vzryva. Izbrannye trudy (Geophysics and Physics of Explosion. Selectals), Moscow: Nauka, 2004.
4. Nikolaev, A.V., Problems of Nonlinear Seismology, Problemy nelineinoi seismiki (Problems of Nonlinear Seismology), Moscow: Nauka, 1987.
5. Oparin, V.N., Tanaino, A.S., and Yushkin, V.F., Discrete Properties of Entities of a Geomedium and Their Canonical Representation, Journal of Mining Science, 2007, vol. 43, no. 3, pp. 221236.
6. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedenii (Canonical Scale of Hierarchy Presentation in the Sciences on Rocks), Novosibirsk: Nauka, 2011.
7. Sadovsky, M.A., Ocherki. Vospominaniya. Materialy (Essays. Memoirs. Commentary), Moscow: Nauka, 2004.
8. Oparin, V.N., Sashurin, A.D., Kulakov, G.I., Leontev, A.V., Nazarov, L.A., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na obekty nedropolzovaniya (Modern Geodynamics of the Upper Lithosphere: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.
9. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part I, Journal of Mining Science, 1999, vol. 35, no. 3, pp. 216230.
10. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part I, Journal of Mining Science, 2000, vol. 36, no. 4, pp. 305326.
11. Leontev, A.V., Analysis of Natural Stresses According to the Measurement Results in Mines on the Territory of Northern Eurasia, Journal of Mining Science, 2001, vol. 37, no. 1, pp. 2837.
12. Proc. Int. Conf. Mining Sciences: Challenges and Prospects, Novosibirsk: IGD SO RAN, 2005.
13. Proc. Int. Conf. Geodynamics and Stress State of the Earths Interior, Novosibirsk: IGD SO RAN, 2006.
14. Proc. Int. Conf. Geodynamics and Stress State of the Earths Interior, Novosibirsk: IGD SO RAN, 2011.
15. Oparin, V.N., Vostrikov, V.I., Tapsiev, A.P., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Seismic Regime, Journal of Mining Science, 2004, vol. 40, no. 4, pp. 321338.
16. Bagaev, S.N., Oparin, V.N., Orlov, V.A., Panov, S.V., and Parushkin, M.D., Pendulum Waves and Their Singling Out in the Laser Deformograph Record of the Large Earthquakes, Journal of Mining Science, 2010, vol. 46, no. 3, pp. 217234.
17. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part I, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 203222.
18. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to the Pendulum Waves in Stressed Geomedia. Part II, Journal of Mining Science, 2013, vol. 49, no. 2, pp. 175209.
19. Oparin, V.N., Sashurin, A.D., Leontev, A.V., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblasti silnogo tekhnogennogo vozdeistviya (Earth Crust Destruction and Self-Organization in the Areas of Heavy Mining-Induced Impact), Novosibirsk: SO RAN, 2012.
20. Oparin, V.N., Annin, B.D., Chugui, Yu.V., et al., Metody i izmeritelnye pribory dlya modelirovaniya i naturnykh issledovanii nelineinykh deformatsionno-volnovykh protsessov v blochnykh massivakh gornykh porod (Methods and Meters for Modeling and In Situ Research of Nonlinear Deformation Waves in Block-Structured Rock Masses), Novosibirsk: SO RAN, 2007.
21. Oparin, V.N., Bagaev, S.N., Malovichko, L.A., et al., Metody i sistemy seismodeformatsionnogo monitoringa tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems of Seism-Deformation Monitoring of Mining-Induced Earthquakes and Rock Bursts), Novosibirsk: SO RAN, 2010.
22. Aleksandrova, N.I., Lectures on Pendulum Waves, Kurs nelineinoi geomekhaniki (Nonlinear Geomechanics Course), Novosibirsk: IGD SO RAN, 2012.
23. Vikulin, A.V., Mir vikhrevykh dvizhenii (World of Eddying), Petropavlovsk-Kamchatski: KGTU, 2008.
24. Veselovsky, R.V., Pavlov, V.E., and Petrov, P.Yu., New Paleomagnetic Data on Anabarsky Heave and Uchuro-Maisky Region and Their Role in Paleogeography and Geological Correlation of the Riphean of the Siberian Platform, Fiz. Zemli, 2009, no. 7.
25. Maslov, L.A., Geodinamika litosfery tikhookeanskokogo podvizhnogo poyasa (Geodynamics of the Pacific Movable Belt Lithosphere), KhabarovskVladivostok: Dalnauka, 1996.
26. Mezhdunarodnyi geologogeofizicheskii atlas Tikhogo okeana (International GeologicalGeophysical Atlas of the Pacific Ocean), MoscowSaint-Petersburg: Mezhpravit. okeanograf. komm., 2003.
27. Kuzikov, S.I. and Mukhamediev, Sh.A., Modern Velocity Field in the Earth Crust in the Central Asian GPS Network Coverage, Fiz. Zemli, 2010, no. 7.
28. Landau, L.D. and Lifshitz, E.M., Mekhanika. Kurs teoreticheskoi fiziki. Tom I (Mechanics. Course on Theoretical Physics. Volume I), Moscow: Nauka, 1973.
29. Ponomarev, V.S., Energy Saturation of Geological Environment, Trudy Geol. Inst. RAN, 2008, no. 582.
30. Sedov, L.I., Mekhanika sploshnoi sredy (Continuum Mechanics), Moscow: Nauka, 1973.
31. Leonov, M.G., Nonconsolidated Crust Tectonics, Trudy Geol. Inst. RAN, 2008, no. 575.
32. Vikulin, A.V. and Ivanchin, A.G., Model of a Seismic Process, Vychislit. Tekhnol., 1997, vol. 2, no. 2.
33. Vikulin, A.V. and Ivanchin, A.G., Rotation Model of a Seismic Process, Tikhookean. Geolog., 1998, vol. 17, no. 6.
34. Panin, V.E., Foundations of Physical Mesomechanics, Fiz. Mezomekh., 1998, no. 1.
35. Vikulin, A.V., Seismichnost. Vulkanizm. Geodinamika: sb. tr. (Seismicity. Volcanicity. Geodynamics: Collected Works), Petropavlovsk-Kamchatski: KamGU, 2011.
36. Vikulin, A.V., Ivanchin, A.G., and Tveritinova, T.Yu., Moment Vortex Geodynamics, Vestn. MGU, Series: Geology, 2011, vol. 66, no. 1.
37. Kasakhara, K., Earthquake Mechanics, Cambridge University Press, 1981.
38. Vikulin, A.V., Vodinchar, G.M., Gusyakov, V.K., et al., Seismic and Volcanic Activity Migration in the High Stress Zone of the High Geodynamically Active Mega-Structures of the Earth, Vestn. KGTU, 2011, no. 17.
39. Prozorov, A.G., Low Probability of Strong Shocks in the Time and Space Vicinity of the World Strong Earthquakes, Voprosy prognoza zemletryasenii i stroeniya Zemli. Vychislitelnaya seismologiya (Issues of Earthquake Prediction and the Earth Structure. Computational Seismology), Moscow: Nauka, 1978.
40. Nikolaevsky, V.N., Geomekhanika i fluidodinamika (Geomechanics and Fluid Dynamics), Moscow: Nedra, 1996.
41. Landau, L.D. and Lifshitz, E.M., Teoriya uprugosti. Kurs teoreticheskoi fiziki. Tom VII (Theory of Elasticity. Course on Theoretical Physics. Volume VII), Moscow: Nedra, 2003.
42. Vikulin, A.V., Bykov, V.G., and Luneva, M.N., Nonlinear Strain Waves in the Rotation Model of Seismic Process, Vychislit. Tekhnol., 2000, vol. 5, no. 1.
43. Davydov, A.S., Solitons in Quasi-Unidimensional Molecular Structures, Usp. Fiz. Nauk, 1982, vol. 138, no. 4.
44. Vikulin, A.V., Fizika Zemli i geodinamika: ucheb. posobie (Physics of Earth and Geodynamics: Educational Aid), Petropavlovsk-Kamchatski: KamGU, 2008.
45. Gaponov-Grekhov, A.V. and Rabinovich, M.I., Mandelshtam and Modern Theory of Nonlinear Vibrations and Waves, Usp. Fiz. Nauk, 1979, vol. 128, no. 4.
46. Vikulin, A.V., Energy and Force Moment of Elastic Rotation Field in Geophysical Medium, Geolog. Geofiz., 2008, vol. 49, no. 6.
47. Vikulin, A.V., New Type of Elastic Rotation Waves in Geoenvironment and the Vortex Geodynamics, Geodinam. Tektonofiz., 2010, vol. 1, no. 2.
48. Karryev, B.S., Vot proizoshlo zemletryasenie (There Was an Earthquake), SIBIS, 2009.
49. Kuznetsov, V.V., Shock-and-Wave Model of an Earthquake. Part I: Strong Earthquake-Induced Movement as Emersion of Wave, Fiz. Mezomekh., 2009, vol. 12, no. 6.
50. Sleznak, O.I., Vikhrevye sistemy litosfery i struktury dokembriya (Vortex Systems in Lithosphere and Pre-Cambrian Structures), Kiev: Naukova dumka, 1972.
51. Borodzich, E.V., Short-Lived Local Perturbances. Nature and Manifestation, Elect. J. Investigated in Russia, available at: http:zhurnal.apl.relarn.ru/articles/2008/ 049.pdf.
52. Borisenkov, E.P. and Pasetsky, V.M., Tysyacheletnyaya letopis neobychainykh yavlenii prirody (Millenary Unusual Natural Phenomena Records), Moscow: Mysl, 1988.
53. Popkov, V.I., Fomenko, V.A., Glazyrin, E.A., and Popov, I.V., Summer 2011 Disastrous Tectonic Event on the Tamansky Peninsula, Dokl. RAN, 2013, vol. 448, no. 6.
54. Geologicheskii slovar (Geological Glossary), Moscow: Nedra, 1978.
55. Carey, S.W., The Rheid Concept in Geotectonics, Bull. Geol. Soc. Austral., 1954, vol. 1.
56. Zharkov, V.N., Vnutrennee stroenie Zemli i planet (Internal Structure of the Earth and Other Planets), Moscow: Nauka, 1983.
57. Ziman, J.M., Principles of the Theory of Solids, Cambridge: Univ. Press, 1964.
58. Vikulin, A.V. and Krolevets, A.N., Chandler Wobble of Magnetic Pole and a Seismic-Tectonic Process, Geolog. Geofiz., 2001, vol. 42, no. 6.
59. Garagash, I.A. and Nikolaevsky, V.N., Cosserats Mechanics for the Earths Science, Vychislit. Mekh. Splosh. Sred, 2009, vol. 2, no. 4.
60. Arsenev, S.A., Babkin, V.A., Gubar, A.Yu., et al., Teoriya mezomasshtabnoi turbulentnosti. Vikhri atmosphery i okeana (Theory of Meso-Scale Turbulence. Vortexes in the Atmosphere and Ocean), MoscowIzhevsk: Inst. Komp. Issled., 2010.
61. Erofeev, V.I., Cosserat Brothers and Generalized Continuum Mechanics, Vychislit. Mekh. Splosh. Sred, 2009, vol. 2, no. 4.
62. Nowacki, W., Theory of Assymetric Elasticity, Warsaw: Polish Scientific Publishers, 1986.
63. Hirth, J.P. and Lothe, J., Theory of Dislocations, New-York: McGraw Hill, 1968.
64. Antonov, V.A. and Kondratev, B.P., Impossible Existence of Elastic-Viscoplastic Waves to Propagate along Lithosphere Fault, Fiz. Zemli, 2008, no. 6.
65. Vikulin, A.V., Melekestsev, I.V., Akmanova, D.R., Ivanchin, A.G., et al., Information-Computer System for Seismicity and Volcanicity Modeling as the Basis for Studies of the Wave Geodynamic Phenomena, Vychislit. Tekhnol., 2012, vol. 17, no. 3.
66. Vikulin, A.V., Akmanova, D.R., Vikulina, S.A., and Dolgaya, A.A., Migration of Seismic and Volcanic Activity as Display of Wave Geodynamic Process, Geodynamics&Tectonophysics, 2012, vol. 3, no. 1.
67. Vikulin, A.V., Tveritinova, T.Yu., and Ivanchin, A.G., Wave Moment Geodynamics, Acta Geophysica, 2013, vol. 61, no. 2.
68. Bykov, V.G., Deformation Waves on the Earth: Concept, Observations, Models, Geolog. Geofiz., 2005, vol. 46, no. 11.
69. Khain, V.E. and Khalilov, E.N., Tsiklichnost geodinamicheskikh protsessov: ee vozmozhnaya priroda (Geodynamic Process Cyclicity: Its Hypothetical Origin), Moscow: Nauch. mir, 2009.
70. Myasnikov, V.P. and Guzev, M.A., Non-Euclidean Model of Material Deformation on Different Structural Levels, Fiz. Mezomekh., 2000, no. 3.
71. Revuzhenko, A.F., Matematicheskii analiz funktsii nearkhimedovoi peremennoi (Mathematical Analysis of Functions of the Non-Archimedean Variable), Novosibirsk: Nauka, 2012.
72. Oparin, V.N. and Vostrikov, V.I., Energy Criterion of Volumetric Destruction of Focal Areas and Pendulum Waves, Metody i sistemy seismodeformatsionnogo monitoringa tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems of Seism-Deformation Monitoring of Mining-Induced Earthquakes and Rock Bursts), Melnikov, N.N. (Ed.), Novosibirsk: SO RAN, 2010.
73. Oparin, V.N., Simonov, B.F., Yushkin, V.F., et al., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiyakh (Geomechanical and Technical Provisions of Vibro-Wave Technologies for Enhanced Oil Recovery), Novosibirsk: Nauka, 2010.
74. Vikulin, A.V., Rotation and Stress State Prediction in the Earths Bowels, Proc. Int. Conf. Geodynamics and Stress State of the Earths Interior, Leontev, A.V. (Ed.), Novosibirsk: IGD SO RAN, 2004.


EVOLUTION OF FRACTURE SURFACE MORPHOLOGY IN ROCKS
V. V. Seredin, L. O. Leibovich, M. V. Pushkareva, I. S. Kopylov, and A. S. Khrulev

The authors have related the stress state and surface roughness of fractures in rocks: with growth of maximum normal stress in the area of a fracture, surface roughness on the site of the maximum shear stress decreases. Based on the found relationship, the authors propose a method of estimating stress state of a material by value of the material fracture surface roughness.

Fracture, stress state, roughness, rocks

REFERENCES
1. Parton, V.Z., and Morozov, E.M., Mekhanika uprogoplasticheskogo razrusheniya (Elastoplastic Failure Mechanics), Moscow: Nauka, 1974.
2. Mohr, O., What Conditions Ultimate Strength and Ultimate Resistance of Materials, Novye idei v tekhnike. Sbornik 1 (New Ideas in Engineering. Collected Volume 1), Petrograd: Obrazovanie, 1915.
3. Karman, T., Triaxial Compression Experiments, Novye idei v tekhnike. Sbornik 1 (New Ideas in Engineering. Collected Volume 1), Petrograd: Obrazovanie, 1915.
4. Davidenkov, N.N., Mekhanicheskie ispytaniya metallov (Mechanical Testing of Metals), Moscow, 1936.
5. Fridman, Ya.B., Edinaya teoriya prochnosti materialov (Unified Theory of Material Strength), Moscow, 1943.
6. Griffith, A.A., The Phenomena of Rupture and Flow in Solids, Phil. Trans. Roy. Soc. A, 1921, vol. 221, no. 2.
7. Turchaninov, I.A., Iofis, M.A., and Kasparyan, E.V., Osnovy mekhaniki gornykh porod (Fundamentals of Rock Mechanics), Leningrad: Nedra, 1989.
8. Irwin, G.R., Analysis of Stresses and Strains near the End of a Crack Traversing a Plate, J. Appl. Mech., 1957, vol. 24, no. 3.
9. Cherepanov, G.P., Mekhanika khrupkogo razrusheniya (Brittle Failure Mechanics), Moscow: Nauka, 1974.
10. Stavrogin, A.N. and Tarasov, B.G., Eksperimentalnaya fizika i mekhanika gornykh porod (Experimental Physics and Mechanics of Rocks), Saint-Petersburg: Nauka, 2001.
11. RF State Standard 21153.0–75. Rocks. Sampling and Physical Testing General Requirements.
12. RF State Standard 21153.2–84. Rocks. Evaluation of Uniaxial Compression Strength.
13. RF State Standard 21153.3–85. Rocks. Evaluation of Uniaxial Tension Strength.
14. Ilnitskaya, E.I., Teder, R.I., Vatolin, E.S., and Kuntysh, M.F., Svoistva gornykh porod i metody ikh opredeleniya (Rock Properties Testing), Moscow: Nedra, 1969.
15. RF State Standard 2789–73. Surface Roughness. Parameters and Characteristics.
16. Kosykh, V.P., Displacement Discontinuity in Granular Materials under Confined-Space Shearing, Journal of Mining Science, 2010, vol. 46, no. 3, pp. 234240.
17. Bobryakov, A.P., Stick-Slip Mechanism in Granular Medium, Journal of Mining Science, 2012, vol. 46, no. 6, pp. 600605.
18. Sergeev, E.M., Golodkovskaya, G.A., Ziangirov, R.S., Osipov, V.I., and Trofimov, V.T., Gruntovedenie (Science of Soils), Moscow: Mosk. Univer., 1973.
19. Kuksenko, V.S., Makhmudov, Kh.V., Mansurov, V.A., Sultanov, U., and Rustamova, M.Z., Changes in Structure of Natural Heterogeneous Materials under Deformation, Journal of Mining Science, 2009, vol. 45, no. 4, pp. 355358.
20. Enikolopyan, N.S., Mkhitaryan, A.A., and Karagezyan, A.S., Ultrarapid Decomposition of Solids under Pressure, Dokl. AN SSSR, 1986, vol. 288, no. 3.
21. Chikov, B.M., Kargapolov, S.A., and Ushakov, G.D., Experimental Stress-Transformation of Pyroxenite, Geolog. Geofiz., 1989, no. 6.
22. Chikov, B.M., Geological Interpretation of Seismic Sources Systems in the Earths Crust (Geomechanics and Tectonophysical Analysis), Geodinam. Tektonofiz., 2010, no. 3.
23. Molchanov, V.I., Selezneva, O.G., and Osipov, S.L., Mechanical Activation of a Mineral Substance as a Background of Stress-Transformations in the Lineaments, Struktura lineamentnykh zon stress-metamorfizma (Structure of Stress-Metamorphism Lineaments), Novosibirsk: Nauka, 1990.


ROCK FAILURE


NUMERICAL-ANALYTICAL INVESTIGATION INTO IMPACT PIPE DRIVING IN SOIL WITH DRY FRICTION. PART II: DEFORMABLE EXTERNAL MEDIUM
N. I. Aleksandrova

Under analysis is propagation of P-waves in an elastic pipe partly embedded in soil with dry friction. The mathematical formulation of the problem on impact pipe driving in soil is based on the model of axial vibration of an elastic bar, considering lateral resistance described using the law of solid dry friction. The author solves problems on axial load on pipe in interaction with external elastic medium, and compares the analytical and numerical results obtained with and without accounting for the external medium deformability.

Axial waves, elastic bar, dry friction, pulsed loading, numerical modeling

REFERENCES
1. Kragelsky, I.V. and Shchedrov, V.S., Razvitie nauki o trenii. Sukhoe trenie (Development of the Friction Science. Dry Friction), Moscow: AN SSSR, 1956.
2. Mikhin, N.M., Vneshnee trenie tverdykh tel (External Friction of Solids), Moscow: Nauka, 1977.
3. Markeev, A.P., Dinamika tela, soprikasayushchegosya s tverdoi poverkhnostyu (Dynamics of a Body in Touch with a Hard Surface), Moscow: Nauka, 1992.
4. Rozenblat, M.G., Sukhoe trenie i odnostoronnie svyazi v mekhanike tverdogo tela (Dry Friction and Unilateral Connections in Solid Mechanics), Moscow: URSS, 2010.
5. Andronov, V.V. and Zhuravlev, V.F., Sukhoe trenie v zadachakh mekhaniki (Dry Friction in Mechanical Problems), MoscowIzhevsk: Inst. Komp. Issled., 2010.
6. Ivanov, A.P., Osnovy teorii sistem s sukhim treniem (Foundations of the Theory on Systems with Dry Friction), MoscowIzhevsk: Inst. Komp. Issled., 2011.
7. Veklich, M.A. and Malyshev, B.M., Propagation of Waves in Elastic Rods in a Medium with Dry Friction, Zadachi mekhaniki tverdogo deformiruemogo tela (Problems of the Deformable Solid Mechanics), Moscow: MGU, 1985.
8. Ormonbekov, T.O, Mekhanika vzaimodeistviya deformiruemykh tel (Mechanics of Interaction of Deformable Bodies), Frunze: Ilim, 1989.
9. Nikitin, L.V., Statika i dinamika tverdykh tel s vneshnim sukhim treniem (Statics and Dynamics of Solids with External Dry Friction), Moscow: Mosk. Litsei, 1998.
10. Yunin, E.K., Zagadki i paradoksy sukhogo trenia (Dry Friction: Puzzles and Paradoxes), Moscow: LIBROKOM, 2008.
11. Gersevanov, N.M., Svainye osnovaniya i raschet fundamentov sooruzhenii (Pile Foundations and Calculation of Construction Bases), Moscow: Stroivoenmorizdat, 1948.
12. Nikitin, L.V., Dynamics of Elastic Rods with Dry Friction, Usp. Mekh., 1988, vol. 11, no. 4.
13. Nikitin, L.V. and Tyurekhodzhaev, A.N., Behavior of Loaded Elastic Rod in Soil, Problemy mekhaniki gornykh porod (Problems of Rock Mechanics), Alma-Ata: Nauka, 1966.
14. Nikitin, L.V., Solid Impact on Elastic Rod with External Dry Friction, Mekh. Tverd. Tela, 1967, no. 2.
15. Nikitin, L.V. and Tyurekhodzhaev, A.N., Pipeline Behavior under Impact Wave Action in Soil, Proc. Int. Conf. Friction, Wear and Lubricants, Tashkent, 1985.
16. Nikitin, L.V. and Tyurekhodzhaev, A.N., Dry Friction Dampening of Dynamic Loads in a Fiber Composite, Mekh. Kompozit. Mater., 1986, no. 1.
17. Zharkova, N.V. and Nikitin, L.V., Applied Problems of Elastic Rod Dynamics, Mekh. Tverd. Tela, 2006, no. 6.
18. Mogilevsky, R.I., Ormonbekov, T.O., and Nikitin, L.V., Dynamics of Rods with Interfacial Dry Friction, Journal of the Mechanical Behavior of Materials, 1993, vol. 5, issue 1.
19. Smirnov, A.L., Dynamics of Composite Structures in a Medium under Nonstationary Impact, Cand. (Phys.-Math.) Dissertation, Novosibirsk, 1990.
20. Sultanov, K.S., Numerical Solution of Problem of Wave Propagation in Viscoelastic Rod with External Dry Friction, Mekh. Tverd. Tela, 1991, no. 6.
21. Aleksandrova, N.I., Numerical-Analytical Investigation into Impact Pipe Driving in Soil with Dry Friction. Part I: Nondeformable External Medium, Journal of Mining Science, 2012, vol. 48, no. 5, pp. 856869.
22. Smith, E. A. L., Pile Driving Analysis by the Wave Equation, ASCE, 1960, vol. 86, no. SM4.
23. Cornelius, C.S. and Kubitza, W.K., Experimental Investigation of Longitudinal Wave Propagation in an Elastic Rod with Coulomb Friction, Exp. Mech., 1970, vol. 10, no. 4.
24. Wilms, E.V. and Wempner, G.A., Motion of an Elastic Rod with External Coulomb Friction, Trans. ASME, 1968, Ser. B, vol. 90.
25. Wilms, E.V., Damping of a Rectangular Stress Pulse in a Thin Elastic Rod by External Coulomb Friction, J. Acoust. Soc. Am., 1969, vol. 45, issue 4.
26. Rausche, F., Moses, F., and Goble, G., Soil Resistance Predictions from Pile Dynamics, ASCE, 1972, vol. 98, no. SM9.
27. Rausche, F., Likins, G., and Goble, G., A Rational and Usable Wave Equation Soil Model Based on Field Test Correlation, Proc. Int. Conf. Design and Construction of Deep Foundations, Orlando, Dec. 1994.
28. Sen, R., Davies, T.G., and Banerjee, P.K., Dynamic Analysis of Piles and Pile Groups Embedded in Homogeneous Soils, Earthquake Engineering & Structural Dynamics, 1985, vol. 13, no. 1.
29. Mabsout, M. and Tassoulas, J., A Finite Element Model for the Simulation of Pile Driving, Int. J. Numer. Methods in Engineering, 1994, vol. 37, no. 2.
30. Mabsout, M., Reese, L., and Tassoulas, J., Study of Pile Driving by Finite-Element Method, J. Geotech. Energ., 1995, vol. 121, no. 7.
31. Paik, K.H., Salgado, R., Lee, J.H., and Kim, B.J., The Behavior of Open- and Closed-Ended Piles Driven into Sands, ASCE, 2003, vol. 129, no. 4.
32. Widjaja, B., Wave Equation Analysis and Pile Driving Analyzer for Driven Piles: 18th Floor Office Building Jakarta Case, Int. Civil Engineering Conf. Towards Sustainable Civil Engineering Practice, Sarabaya, 2006.
33. Sheng, D., Wriggers, P., and Sloan, S.W., Improved Numerical Algorithms for Frictional Contact in Pile Penetration Analysis, Computers and Geotechnics, 2006, vol. 33.
34. Sheng, D., Wriggers, P., and Sloan, S.W., Application of Frictional Contact in Geotechnical Engineering, International Journal of Geomechanics, 2007, vol. 7, no. 3.
35. Khelifi, Z., Berga, A., and Terfaya, N., Modeling the Behavior of Axially and Laterally Loaded Pile with a Contact Model, EJGE, 2011, vol. 16, bund. N.
36. Petreev, A.M. and Smolentsev, A.S., Blow Energy Transmission from a Striking Machine Element to a Pipe via Adaptor, Journal of Mining Science, 2011, vol. 47, no. 6, pp. 787797.
37. Isakov, A.L. and Shmelev, V.V., Shock-Pulse Transmission on Driving Metal Tubes into the Ground, Journal of Mining Science, 1998, vol. 34, no. 1, pp. 7379.
38. Isakov, A.L. and Shmelev, V.V., Wave Processes when Driving Metal Pipes into the Ground Using Shock-Pulse Generators, Journal of Mining Science, 1998, vol. 34, no. 2, pp. 139147.
39. Beloborodov, V.N., Isakov, A.L., Plavskikh, V.D., and Shmelev, V.V., Modeling Impulse Generation during the Driving of Metals Pipes into Soil, Journal of Mining Science, 1997, vol. 33, no. 6, pp. 549553.
40. Beloborodov, V.N. and Glotova, T.G., Evaluating the Elastic Properties of the Ground, Journal of Mining Science, 1998, vol. 34, no. 6, pp. 565568.
41. Sridhar, N., Yang, Q.D., and Cox, B.N., Slip, Stick, and Reverse Slip Characteristics during Dynamic Fiber Pullout, Journal of the Mechanics and Physics of Solids, 2003, vol. 51.
42. Ormonbekov, T.O, Vzaimodeistvie konstruktsii so sredoi (Construction and Host Medium Interaction), Frunze: Ilim, 1963.
43. Abdukadyrov, S.A., Stepanenko, M.V., and Pinchukova, N.I., A Method for Numerical Solution of the Dynamics Equations of Elastic Media and Structures, Journal of Mining Science, 1984, vol. 20, no. 6, pp. 449455.
44. Dech, G., Rukovodstvo po prakticheskomy primenenyu preobrazovaniya Laplasa i Z preobrazovaniya (Manual on Application of the Laplace and Z Transforms), Moscow: Nauka, 1971.


SCIENCE OF MINING MACHINES


EFFECT OF ADDITIONAL VIBRATION EXCITER AND COUPLED VIBRO-PERCUSSION UNITS ON PENETRATION RATE OF PIPE IN SOIL
I. V. Tishchenko, V. V. Chervov, and A. I. Gorelov

Aimed to improve capacity of vibro-percussion driving of steel pipes in soil, the authors describe experimental modeling of the process with additional vibration exciters of axial and transverse vibrations series-linked to impulsive load source. Workability of the combination of two extended action spectrum percussion units as the vibration exciter is illustrated.

Percussion generator, impact impulse unit, vibration exciter, axial and transverse vibrations, impact impulse amplitude, impact frequency, penetration rate

REFERENCES
1. Khestle, Kh., Spravochnik stroitelya. Stroitelnaya tekhnika, konstruktsii i tekhnologii (Builders Guide. Construction Machines, Structures and Technologies), Moscow: Tekhnosfera, 2007.
2. Smolyanitsky, B.N., Tishchenko, I.V., Chervov, V.V., et al., Sources for Productivity Gain in Vibro-Impact Driving of Steel Elements in Soil in Special Construction Technologies, Journal of Mining Science, 2008, vol. 44, no. 5, pp. 490496.
3. Chervov, V.V., Tishchenko, I.V., and Smolyanitsky, B.N., Effect of Blow Frequency and Additional Static Force on the Vibro-Percussion Pipe Penetration Rate in Soil, Journal of Mining Science, 2011, vol. 47, no. 1, pp. 8592.
4. Tishchenko, I.V., Chervov, V.V., and Gorelov, A.I., Power Impulse in a Rod under Vibro-Impact Driving in Ground, Proc. Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2012.
5. Tsytovich, N.A., Mekhanika gruntov (Soil Mechanics), Moscow: Vyssh. shk., 1979.
6. Bauman, V.A. and Bykhovsky, I.I., Vibratsionnye mashiny i protsessy v stroitelstve (Vibration Machines and Processes in Construction), Moscow: Vyssh. shk., 1977.
7. Vostrikov, V.I., Oparin, V.N., and Chervov, V.V., On Some Features of Solid-Body Motion under Static Actions, Journal of Mining Science, 2000, vol. 36, no. 6, pp. 523528.
8. Makarov, R.A., Rensky, A.B., Borkunsky, G.Kh., et al., Tenzometriya v mashinostroenii (Strain Measurement in Machine Construction), Moscow: Mashinostroenie, 1975.
9. Nubvert, G.P., Izmeritelnye preobrazovateli neelektricheskikh velichin (Nonelectrical Quantity Transducers), Leningrad: Energiya, 1970.
10. Smolyanitsky, B.N., Chervov, V.V., Trubitsyn, V.V., et al., New Pneumatic Impact Machines Typhoon for Specific Construction Operations, Mekhaniz. Stroit., 1997, no. 7.
11. Kostylev, A.D., Danilov, B.B., Smolyanitsky, B.N., Syryamin, A.T., and Chervov, V.V., Authors Certificate no. 1245666, Byull. Izobret., 1986, no. 27.


CONCERTED OPERATION OF PNEUMATIC PERCUSSION TOOL AND AIR-AIDED CHIPS REMOVAL LINE IN HORIZONTAL HOLE DRILLING MACHINES
B. B. Danilov and B. N. Smolyanitsky

The authors study work process of pneumatic percussion units with valveless air distribution under exhaust back pressure in drilled solid removal line in long horizontal hole drilling machines. It is shown that range of efficient values of the machine performance equal to maximum percussion force does not change under increase in the exhaust back pressure.

Pneumatic percussion unit, hole, soil, main removal line, exhaust line, exhaust back pressure

REFERENCES
1. Danilov, B.B. and Smolyanitsky, B.N., RF patent no. 2344241, Byull. Izobret., 2009, no. 2.
2. Tkach, Kh.B., Tekhnologiya i mekhanizatsiya rasshireniya skvazhin s chastichnym udaleniem grunta (Technology and Mechanization of Hole Reaming with Partial Removal of Broken Soil), Yaroslavl: OMTPS Minstroi SSSR, 1976.
3. Kostylev, A.D., Analysis of Borehole Driving by a Pneumatic Puncher, Journal of Mining Science, 2000, vol. 36, no. 3, pp. 281286.
4. Gurkov, K.S., Klimashko, V.V., Kostylev, A.D., Plavskikh, V.D., Rusin, E.P., Smolyanitsky, B.N., Tupitsyn, K.K., and Chepurnoi, N.P., Pnevmoproboiniki (Pneumatic Punching Machines), Novosibirsk: IGD SO RAN, 1990.
5. Kostylev, A.D., Kogan, D.I., Smolyanitsky, B.N., Syryamin, Yu.N., and Danilov, B.B., Downhole Ring-Shaped Pneumatic Puncher for Exploration Hole Drilling, Journal of Mining Science, 1969, vol. 5, no. 6, special inclosure.
6. Ashavsky, A.M., Osnovy proektirovaniya optimalnykh parametrov svainykh zaboinykh mashin (Basics for Optimized Parameter Design of Pile Driving Machines), Moscow: Nedra, 1966.
7. Abramenkov, E.A., Functional Connection of the Energy Parameters and Geometry in a Pressure-Difference Pneumatic Percussion Tool, Izv. vuzov, Stroit. Arkhitekt., 1985, no. 1.
8. Gerts, E.V. and Kreinin, G.V., Teoriya i raschet pnevmaticheskikh silovykh ustroistv (Theory and Calculation of Pneumatic Force Machines), Moscow: AN SSSR, 1960.
9. Petreev, A.M., Modes of Operation of Percussive Machines, Journal of Mining Science, 1969, vol. 5, no. 6, pp. 669675.
10. Petreev, A.M. and Boginsky, V.P., Dynamics of Valveless Pneumatic Percussion Tool with a Controlled Chamber, Gornye mashiny (Mining Machines), Novosibirsk: IGD SO AN SSSR, 1980.
11. Rusin, E.P., Electronic Digital Computer-Aided Examination of a Bidirectional Pneumatic Percussion Tool, Gornye mashiny (Mining Machines), Novosibirsk: IGD SO AN SSSR, 1980.
12. Syryamin, Yu.N. and Smolyanitsky, B.N., A Study of No-Valve Pneumatic-Shock Mechanisms with Two Controllable Chambers with Respect to the Development of Machines with a Run-Through Axial Channel, Journal of Mining Science, 1986, vol. 22, no. 2, pp. 135–140.
13. Danilov, B.B., Smolyanitsky, B.N., and Sukhareva, L.I., Calculation Procedure for Ring-Shaped Exploration Drilling Pneumatic Punching Machines, Journal of Mining Science, 1987, no. 5, special inclosure.
14. Anistratenko, V.O. and Fedorov, V.G., Matematicheskoe planirovanie eksperimentov v APK (Mathematical Design Planning in the Agroindustry), Kiev, Vyssh. shk., 1993.


ANALYSIS OF THE DYNAMICS OF TWO-WAY HYDROPERCUSSION SYSTEMS. PART II: INFLUENCE OF DESIGN FACTORS AND THEIR INTERACTION WITH ROCKS
L. V. Gorodilov

The mathematical model of two-way hydropercussion system considers design philosophy of the system and its interaction with rocks. The author analyzes numerically effect of design factors on dynamics and integral output capability of limit cycles.

Percussion system, self-excited vibration, limit cycle, similarity criteria, output capability

REFERENCES
1. Gorodilov, L.V., Analysis of the Dynamics of Two-Way Hydropercussion Systems. Basic Properties, Journal of Mining Science, 2012, vol. 48, no. 3, pp. 487496.
2. Alshtul, A.D. and Kiselev, P.G., Gidravlika i aerodinamika (Hydraulics and Aerodynamics), Moscow: Izd. lit. stoit., 1965.
3. Alimov, A.D. and Basov, S.A., Gidravlicheskie vibroudarnye sistemy (Hydraulic Vibro-Percussion Systems), Moscow: Nauka, 1990.
4. Saginov, A.S., Yantsen, I.A., Eshutkin, D.N., and Piven, G.G., Teoreticheskie osnovy sozdaniya gidroimpulsnykh sistem udarnykh organov mashin (Theoretical Bases of Designing Hydraulic Impulse Systems for Percussive Tools), Alma-Ata: Nauka, 1985.
5. Gorodilov, L.V. and Pashina, O.A., Calculating Parameters of Self-Oscillation Hydropercussion Systems, Considering Similarity Criteria, Proc. Int. Conf. Fundamental Problems of Geo-Environment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2011.


MINE AEROGASDYNAMICS


ENERGY-SAVING MINE VENTILATION
B. P. Kazakov, A. V. Shalimov, and A. S. Kiryakov

The authors show three methods of energy saving in mine ventilation: recirculating airing, minimization of main mine fan pressure by privative adjustment, and two-parameter optimization of fan performance (by rotary velocity and angle of blades). Energy saving using any of the methods is illustrated in the article.

Energy saving, recirculation, optimization, adjustment, maximum contamination level, efficiency, head-flow characteristics

REFERENCES
1. Kazakov, B.P., Shalimov, A.V., Kruglov, Yu.V., Levin, L.Yu., Isaevich, A.G., and Stukalov, V.A., Improvement of Resource-Saving Ventilation Systems in Mines of the Upper Kama Potash Deposit, Gorny Zh., 2008, no. 10.
2. Levin, L.Yu. and Kruglov, Yu.V., Recirculating Ventilation and Its Economic Efficiency in Potash Mines, Gorn. Inform.-Analit. Byull., 2008. no. 10.
3. Edinye pravila bezopasnosti pri razrabotke rudnykh, nerudnykh i rossypnykh mestorozhdenii poleznykh iskopaemykh podzemnym sposobom (Uniform Safety Rules of Underground Mining of Ore Minerals, Rock Products and Placers), Moscow: Gosgortekhnadzor Rossii, 2003.
4. Alymenko, D.N., Aerodynamic Schemes of Energy-Saving Fans, Gorn. Inform.-Analit. Byull., 2009, no. 12.
5. Ventilation Network of Mine-4, Belaruskali JSC, and Recommendations and Engineering Solutions toward Heat and Electrical Energy Saving, Research Engineering Report, PermSoligorsk, 20042005.
6. Protasenya, I.V., Beresnev, S.P., Kruglov, Yu.V., Grishin, E.L., and Kiryakov, A.S., Unified Information-and-Analysis System AeroSet for Design and Calculation of Potash Mine Ventilation, Gorny Zh., 2010, no. 8.
7. Kazakov, B.P. and Shalimov, A.V., Energy-Saving Automated Control of Mine Ventilation, Gorny Zh., 2012, no. 3.


GEOINFORMATION SCIENCE


REGIONAL GEOMECHANICAL-GEODYNAMIC CONTROL GEOINFORMATION SYSTEM WITH ENTROPY ANALYSIS OF SEISMIC EVENTS (IN TERMS OF KUZBASS)
V. P. Potapov, V. N. Oparin, A. B. Logov,a R. Yu. Zamaraev, and S. E. Popov

The presented geoinformation system is based on cloud service classification of natural and mining-induced seismic events. The data entropy-based models treat seismic signals as functions of a waveguide led from a seismic source to a seismic station. The quality similarity or distinction of the models is related with the genesis of seismic events. The service includes Google App Engine cloud calculating technologies, IRIS Data Management Center web-services and local seismic monitoring databases. The application of the cloud service to classifying unknown-genesis seismic events is illustrated by the examples.

Industrial and regional seismicity, seismic signals, classification, cloud service, geoinformation system

REFERENCES
1. Oparin, V.N., Sashurin, A.D., Leontev, A.V., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh silnogo tekhnogennogo vozdeistviya (Earths Crust Destruction and Self-Organization in the Areas of Powerful Industrial Impact), N. N. Melnikov (Ed.), Novosibirsk: SO RAN, 2012.
2. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to Pendulum Waves in Stress Geomedia. Part I, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 203222.
3. Adushkin, V.V. and Oparin, V.N., From the Alternating-Sign Explosion Response of Rocks to Pendulum Waves in Stress Geomedia. Part II, Journal of Mining Science, 2013, vol. 49, no. 2, pp. 175209.
4. Logov, A.B., Zamaraev, R.Yu., and Logov, A.A., Analiz sostoyaniya unikalnykh obektov (Analysis of Condition of Unique Objects), Moscow: Mashinostroenie, 2010.
5. Zamaraev, R.Yu., Development of Entropy Analysis of Processes in Mining Industry, Gorn. Inform.-Analit. Byull., 2009, no. 7.
6. Zamaraev, R.Yu., Models and Algorithms for the Analysis of Condition of Complex Geological Structures, Proc. 12th All-Russia Conf. Ecological Monitoring, Kemerovo: KemGU, 2011.
7. IRIS DMC Web Services. URL: http://www.iris.edu/ws/ (as of 02.02.2012).
8. Making Remote Procedure. GOOGLE.COM. URL: http://code.google. com/intl/ru-RU/webtoolkit/doc/latest/tutorial/RPC.html (as of 02.02.2012).
9. IRIS Event Webservice. URL: http://www.iris.edu/ws/event/ (as of 02.02.2012).
10. IRIS Station Webservice. URL: http://www.iris.edu/ws/station/ (as of 02.02.2012).
11. IRIS Availability Webservice. URL: http:// www.iris.edu/ws/availability/ (as of 02.02.2012).
12. IRIS Timeseries Webservice. URL: http:// www.iris.edu/ws/timeseries/ (as of 02.02.2012).


MINERAL DRESSING


X-RAY PHOTOELECTRON SPECTROSCOPY-BASED ANALYSIS OF CHANGE IN THE COMPOSITION AND CHEMICAL STATE OF ATOMS ON CHALCOPYRITE AND SPHALERITE SURFACE BEFORE AND AFTER THE NANOSECOND ELECTROMAGNETIC PULSE TREATMENT
V. A. Chanturia, I. Zh. Bunin, M. V. Ryazantseva, and I. A. Khabarova

Using X-ray photoelectron spectroscopy, the authors analyze the change in the surface layer composition and chemical state of atoms of chalcopyrite and sphalerite as a result of treatment by high-power nanosecond electromagnetic pulses. General regular patterns and distinctions of modification of the mineral surface and floatability under high-power pulse treatment are found. The research findings are supported by the results of experimental improvement gained in selective separation of sulfides after the high-power nanosecond electromagnetic treatment.

Chalcopyrite, sphalerite, high-power nanosecond electromagnetic pulses, X-ray photoelectron spectroscopy, surface, flotation

REFERENCES
1. Nefedov, V.I., Rentgenoelektronnaya spektroskopiya khmicheskikh soedinenii: spravochnik (X-Ray Electron Spectroscopy of Chemical Compounds: Reference Guide), Moscow: Khimiya, 1984.
2. Mazalov, L.N., Rentgenovskie spektry (X-Ray Spectra), Novosibirsk: INKH SO RAN, 2003.
3. Plaksin, I.N. and Shafeev, R.Sh., Effect of Electrochemical Potential on Distribution of Xanthogen over Sulfides, Dokl. AN SSSR, 1958, vol. 118, no. 3.
4. Plaksin, I.N. and Shafeev, R.Sh., Feature of Hydrophobic Effect on Oxygen on the Surface of Sulfide Minerals, Dokl. AN SSSR, 1960, vol. 135, no. 5.
5. Mikhlin, Yu.L., Real Surface Condition and Peculiarities of Metal Sulfide Dissolution and Oxidation Kinetics in Interaction with Acid Solution, Dr. Chem. Sci. Dissertation, Krasnoyarsk, 2002.
6. Stroshkov, V.P. and Kuznetsov, M.V., X-Ray Photoelectron Spectroscopy of Change in the Chemical Composition of Surface Layers of Titanium Alloy before and After Electrochemical Treatment, Fiz. Khim. Obrab. Mater., 2008, no. 6.
7. Chanturia, V.A., Filippova, I.V., Filippova, L.O., Ryazantseva, M.V., and Bunin, I.Zh., Effect of Powerful Nanosecond Electromagnetic Pulses on Surface and Flotation Properties of Carbonate-Bearing Pyrite and Arsenopyrite, Journal of Mining Science, 2008, vol. 44, no. 5, pp. 518530.
8. Chanturia, V.A., Bunin, I.Zh., Ryazantseva, M.V., Filippova, I.V., and Koporulina, E.V., Nanosecond Electromagnetic Pulse Effect on Phase Composition of Pyrite and Arsenopyrite Surfaces, Their Sorption and Flotation Properties, Journal of Mining Science, 2011, vol. 47, no. 4, pp. 506513.
9. Chanturia, V. A. Bunin, I.Zh., Ryazantseva, M.V., and Khabarova, I.A., Influence of Nanosecond Electromagnetic Pulses on Phase Composition, Electrochemical, Sorption and Flotation Properties of Chalcopyrite and Sphalerite, Journal of Mining Science, 2012, vol. 48, no. 4, pp. 732740.
10. Chanturia, V.A., Trubetskoy, K.N., Viktorov, S.D., and Bunin, I.Zh., Nanochastitsy v protsessakh razrusheniya i vskrytiya geomaterialov (Nanoparticles of Geomaterials Subjected to Fracture and Opening), Moscow: IPKON RAN, 2006.
11. Bunin, I.Zh., Fundamentals of Influencing Disintegration and Opening of Fine-Dispersed Mineral Aggregates and Noble Metal Extraction from Ore by Nanosecond Electromagnetic Pulses, Dr. Eng. Dissertation, Moscow: RGGRU, 2009.
12. Chanturia, V.A., Gulyaev, Yu.V., Bunin, I.Zh., et al., Synergetic Effect Exerted by Powerful Electromagnetic Pulses and Pore Moisture on Dissociation of Gold-Bearing Minerals, Dokl. RAN, 2001, vol. 379, no. 3.
13. Lee, S.Y., Mettlach, N., Nguyen, N., Sun, Y.M., and White, J.M., Copper Oxide Reduction through Vacuum Annealing, Appl. Surface Sci., 2003, vol. 206, issues 14.
14. Mielczarski, J.A., Cases, J.M., Alnot, M., and Ehrhardt, J.J., XPS Characterization of Chalcopyrite, Tetrahedrite and Tennantite Surface Products after Different Conditioning: 1. Aqueous Solution at pH 10, Langmuir, 1996, vol. 12.
15. Jihua Gong, The Role of High Molecular Weight Polyethylene Oxide in Reducing Quartz Gangue Entrainment in Chalcopyrite Flotation by Xanthate Collectors, Doctor of Philosophy in Materials Engineering Thesis, Edmonton, 2011.
16. Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., et al., NIST X-Ray Photoelectron Spectroscopy Database, Standard Reference Database 20, Vers. 3.4, Web version, 20002008, http://srdata.nist.gov/xps
17. Knipe, S.W., Mycroft, J.R., Pratt, A.R., Nesbitt, H.W., and Bancroft, G.M., X-Ray Photoelectron Spectroscopic Study of Water Adsorption on Iron Sulphide Minerals, Geochimica et Cosmochimica Acta, 1995, no. 6.
18. Schaufub Andrea G., Wayne Nesbitt H., Ilkka Kartio Laajalehto, Michael Bancroft G., and Rudiger Szargan, Incipient Oxidation of Fractured Pyrite Surface in Air, Journal of Electron Spectroscopy and Related Phenomena, 1998, no. 96.
19. Chanturia, V.A., Bunin, I.Zh., and Kovalev, A.T., On the Field Emission Properties of the Sulfide Minerals under High-Power Nanosecond Pulses, Bulletin of the Russian Academy of Sciences: Physics, 2007, vol. 71, no. 5.
20. Tauson, V.L., Babkin, D.N., Lipko, S.V., Laustenberg, E.E., Parkhomenko, I.Yu., Pastushkova, T.M., Loginov, P.B., and Loginov, B.A., Distribution of Heavy Metals (Hg, Cd, Pb) between Sphalerite and Hydrothermal Solution and the Chemistry Typo of Sphalerite Surface (XPS, Auger Spectroscopy and AFM Data), Geokhim., 2010, no. 1.
21. Brion, D., Photoelectron Spectroscopic Study of the Surface Degradation of Pyrite (FeS2), Chalcopyrite (CuFeS2), Sphalerite (ZnS), and Galena (PbS) in Air and Water, Appl. Surf. Sci., 1980, no. 5.
22. Tauson, L.V., Principle of Continuity of Phase Formation on Mineral Surface, Dokl. RAN, 2009, vol. 425, no. 5.
23. Veremeenko, M.D., Solozhenkin, P.M., Nefedov, V.I., and Lupatov, G.Yu., XPS-Based Analysis of Surface Change in Sphalerite during Flotation, Izv. Taj. SSR AN, 1986, no. 2.
24. Descostes, M., Mercier, F., Thromat, N., Beaucaire, C., and Gautier-Soyer, M., Use of XPS in the Determination of Chemical Environment and Oxidation State of Iron and Sulfur Samples: Constitution of a Data Basis in Binding Energies for Fe and S Reference Compounds and Applications to the Evidence of Surface Species of an Oxidized Pyrite in a Carbonate Medium, Appl. Surf. Sci., 2000, no. 165.
25. Khmeleva, T.N., Georgiev, T.V., Jasieniak, M., Skinner, W.M., and Beattie, D.A., XPS and ToF-SIMS Study of a ChalcopyritePyriteSphalerite Mixture Treated with Xanthate and Sodium Bisulphate, Surface and Interface Analysis, 2005, no. 37.
26. Nesmeyanov, A.N., Radiokhimiya (Radio Chemistry), Moscow: Khimiya, 1978.
27. Cherepenin, V.A., Relativistic Multi-Wave Generators and Their Application, Usp. Fiz. Nauk., 2006, vol. 176, no. 10.
28. Chanturia, V.A., Bunin, I.Zh., Lunin, V.D., Gulyaev, Yu.V., et al., Use of High-Power Electromagnetic Pulses in Processes of Disintegration and Opening of Rebellious Gold-Containing Raw Material, Journal of Mining Science, 2001, vol. 37, no. 4, pp. 427437.
29. Chanturia, V.A., Bunin, I.Zh., and Kovalev, A.T., Energy Concentration in Electric Discharge between Particles of Semiconducting Sulphide Minerals under the Action of High-Power Nanosecond Pulses, Bulletin of the Russian Academy of Sciences: Physics, 2008, vol.72, no. 8.
30. Bogdanov, O.S., Maksimov, I.I., Podnek, A.K., and Yanis, N.A., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Moscow: Nedra, 1980.
31. Bunin, I.Zh., Zubenko, A.V., and Koporulina, E.V., Effect of Different-Parameter High-Power Electromagnetic Pulses on Damage Initiation and Fracture of Sulfide Minerals, Gorn. Inform.-Analit. Byull., 2006, no. 2.


PRINCIPLES OF KINETIC ION MODELING OF ADSORPTIVE COLLECTOR LAYER AT THE SURFACE OF NONFERROUS HEAVY METAL SULFIDES
B. E. Goryachev and A. A. Nikolaev

The article considers principles of constructing kinetic models of an adsorptive collector layer at sulfide mineral surface and explains the physics of the models that consists in the connection between ions of flotation slurry liquid phase and relative areas of mineral grain surface.

Flotation, hydrophobic behavior, hydrophilic behavior, relative area, flotation reagents, interaction kinetics

REFERENCES
1. Okolovich, A.M., Optimization of Ion Composition of Flotation Slurry, Teoreticheskie osnovy i kontrol protsessov flotatsii (Theory and Control of Flotation), Moscow: Nauka, 1980.
2. Abramov, A.A., Teoreticheskie osnovy optimizatsii selektivnoi flotatsii sulfidnykh rud (Theory of Optimizing Selective Flotation of Sulfide Ore), Moscow: Nedra, 1978.
3. Abramov, A.A. and Avdokhin, V.M., Physicochemical Modeling of Flotation Systems, Obog. Rud, 1976, issue 4.
4. Morozov, V.V. and Avdokhin, V.M., Optimization of Complex Ore Concentration Based on Control and Adjustment of Ion Composition in Flotation Slurry and Process Water, Gorn. Inform.-Analit. Byull., 1998, no. 1.
5. Goryachev, B.E., Model of Adsorptive Collector Layer Formation on the Surface of Nonferrous Heavy Metal Sulfides, Tsv. Metally, 1989, no. 12.
6. Frumkin, A.N., Bagotsky, V.S., Iofa, Z.A., et al., Kinetika elektrodnykh protsessov (Kinetics of Electrode Processes), Moscow: MGU, 1952.
7. Delahay, P. Double Layer and Electrode Kinetics, New York: Interscience Publishers, 1965.
8. Damaskin, B.B. and Petry, O.A., Vvedenie v elektrokhimicheskuyu kinetiku (Introduction into Electrochemical Kinetics), Moscow: Vyssh. Shk., 1975.
9. Plaksin, I.N. and Shafeev, R.Sh., Mechanism of Origination of Electrochemical Nonuniformity on the Surface of Sulfide Minerals, Dokl. AN SSSR, 1959, vol. 125, no. 3.
10. Abramov, A.A. and Goryachev, B.E., Connection of Sorption and Flotation Properties of Chalcosite in the Presence of Cyanide, Kompleksn. Isp. Min. Syr., 1980, no. 10.
11. Strizhko, V.S., Goryachev, B.E., Ulasyuk, S.M., Basic Kinetic Parameters of Electrochemical Oxidation of Galena in Alkali Solutions, Izv. vuzov, Tsvet. Met., 1986, no. 6.
12. Strizhko, V.S., Goryachev, B.E., Ishcheikin, V.G., and Ulasyuk, S.M., Analysis of the Nature of Surface Reactions on Galena, Chalcopyrite and Pyrite by the Method of Potential Decay, Tsvet. Met., 1990, no. 1.
13. Abramov, A.A., Flotatsionnye metody obogashcheniya (Dressing by Flotation), Moscow: Nedra, 1993.
14. Bogdanov, O.S., Maksimov, I.I., and Podnek, A.I., Teoriya i tekhnologiya flotatsii rud (Theory and Technology of Ore Flotation), Moscow: Nedra, 1985.
15. Konev, V.A., Flotatsiya sulfidov (Sulfide Flotation), Moscow: Nedra, 1985.
16. Abramov, A.A., Leonov, S.B., and Sorokin, M.M., Khimiya flotatsionnykh reagentov (Chemistry of Flotation Reagents), Moscow: Nedra, 1982.
17. Sorokin, M.M., Flotatsionnye metody obogashcheniya. Khimicheskie osnovy flotatsii: ucheb. posobie (Dressing by Flotation. Chemical Bases of Flotation: Educational Aid), Moscow: MISiS, 2011.
18. Goryachev, B.E., Shalnov, A.S., Fokina, E.E., et al., Floatability of Particles with Chemically Inhomogeneous Surface and Its Connection with Physicochemical Characteristics of Wetting, Tsv. Metally, 2002, no. 5.
19. Scorcelletti, V.V., Theoretical Background of Metal Corrosion, Moscow: Khimiya, 1973.
20. Goryachev, B.E., Nikolaev, A.A., and Lyakisheva, L.N., Electrochemistry of Galena Oxidation as the Basis for Optimization of Agent Modes in Flotation of Polymetallic Ores, Journal of Mining Science, 2010, vol. 46, no. 6, pp. 681689.
21. Goryachev, B.E., Nikolaev, A.A., and Lyakisheva, L.N., Electrochemical Kinetics of GalenaSulfhydryl Collector Interaction as the Basis to Develop Ion Models of Sorption Layer Formation on the Surface of Sulphide Minerals, Journal of Mining Science, 2011, vol. 47, no. 3, pp. 382389.
22. Goryachev, B.E. and Nikolaev, A.A., Galena Oxidation Mechanism, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 354362.
23. Goryachev, B.E. and Nikolaev, A.A., Galena and Alkali Metal Xanhtate Interaction in Alkaline Conditions, Journal of Mining Science, 2012, vol. 48, no. 6, pp. 10581064.
24. Shui, R.T., Poluprovodnikovye rudnye mineraly (Semiconducting Ore Minerals), Moscow: Nauka, 1979.
25. Chanturia, V.A. and Vigdergauz, V.E., Elektrokhimiya sulfidov. Teoriya i praktika flotatsii (Electrochemistry of Sulfides. Theory and Practice of Flotation), Moscow: Ruda Metally, 2008.


COMPUTATIONAL FLUID DYNAMICS METHODS IN RESEARCH AND ANALYSIS OF MINERAL SEPARATION
V. F. Skorokhodov, M. S. Khokhulya, A. S. Opalev, V. V. Biryukov, and R. M. Nikitin

Parameters of heterogeneous working fluid in magnetic-gravity, gravity and flotation machines are studied using methods of computational fluid dynamics. Numerical modeling of separation processes allowed graphical and numerical characterization of separation. The article bases suggestions on improvement of the designs of gravity and magnetic-gravity processing equipment and offers an approach to evaluating surface energy of mineral particles in flotation modeling.

Computational fluid dynamics, numerical modeling, separation, magnetic-gravity separation machine, hydraulic separation machine, flotation machine, fluidized bed

REFERENCES
1. Shukla, S.K., Shukla, P., and Ghosh, P., Evaluation of Numerical Schemes for Dispersed Phase Modeling of Cyclone Separators, Engineering Applications of Computational Fluid Mechanics, 2011, vol. 5, no. 2.
2. Leeuwner, M.J. and Eksteen, J.J., Computational Fluid Dynamic Modeling of Two Phase Flow in Hydrocyclone, The Journal of the Southern African Institute of Mining and Metallurgy, 2008, vol. 108, no. 4.
3. Doroodchi, E., Galvin, K.P., and Fletcher, D.F., The Influence of Inclined Plates on Expansion Behavior of Solid Suspensions in a Liquid Fluidized BedA Computational Fluid Dynamics Study, Powder Technology, 2005, vol. 156, no. 2.
4. Hedvall, P. and Nordin, M., Plant Designer: A Crushing and Screening Modeling Tool, Mineral Processing Plant Design, Practice and Control: Proceedings, Society for Mining, Metallurgy and Exploration, Inc., 2002, vol. 1.
5. Harris, M., Runge, K., Whiten, W., and Morrison R., JKSimFloat as a Practical Tool for Flotation Process Design and Optimization, Mineral Processing Plant Design, Practice and Control: Proceedings, Society for Mining, Metallurgy and Exploration, Inc., 2002, vol. 1.
6. Nigmatulin, R.I., Dinamika mnogofaznykh sred. Ch. 1 (Dynamics of Multi-Phase Media. Part I), Moscow: Nauka, 1987.
7. Bowen, R., Theory of Mixtures, Continuum Physics, New York: Academic Press, 1976.
8. Drew, D. and Lahey, R., Particulate Two-Phase Flow, Boston: Butterworth-Heinemann, 1993.
9. Melnikov, N.N., Gershenkop, A.Sh., Skorophodov, V.F., and Biryukov, V.V., RF patent no. 2387483, Byull. Izobret., 2010, no. 12.
10. Fersman, A.E., Goekhimiya (Geochemistry), MoscowLeningrad: ONTI, Khimteoret., 1936.
11. Zuev, V.V, Potselueva, L.N., and Goncharov, Yu.D., Kristalloenergetika kak osnova otsenki svoistv tverdotelnykh materialov (Crystal EnergeticsThe Basis of the Solid Material Properties Assessment), Saint-Petersburg, 2006.


MOBILITY OF WATER-SOLUBLE NONFERROUS AND PRECIOUS METALS IN AGED MINERAL PROCESSING WASTE
A. G. Mikhailov, M. Yu. Kharitonova, I. I. Vashlaev, and M. L. Sviridova

Based on the analyzed redistribution of nonferrous and precious metals in aqueous and weak acid solutions passed through coppernickel ore dressing refuses, the authors have obtained distribution of the metals in the mineral phases at different levels of the filtering layer in the tailings and in different contact solutions. Potential extractability of gold and platinum at 28.4 and 3.9% of the total quantity of mine refuse, respectively, using weak acid contact solution is shown in the article.

Aged mine refuse, aqueous metal solution, nonferrous and precious metals

REFERENCES
1. Trubetskoy, K.N., Current Conditions of Minerals and Raw Materials Resources in Mining Industry in Russia, Gorny Zh., 1995, no. 1.
2. Chanturia, V.A., Contemporary Problems of Mineral Raw Material Beneficiation in Russia, Journal of Mining Science, 1999, vol. 35, no. 3, pp. 314328.
3. Kovalenko, L.N., Blagodatin, Yu.V., Golubeva, T.D., and Lomteva, L.L., Noble Metal Occurrence Forms in Products of Disseminated Sulfide Ore Flotation in Norilsk, Obog. Rud, 1993, nos. 12.
4. Makarov, V.A., Geologo-tekhnologicheskie osnovy revizii tekhnogennogo mineralnogo syrya na zoloto (Geological and Technological Basis of Mineral Waste Accumulation Audit Aimed at Gold Content Evaluation), Krasnoyarsk: OOO Polikom, 2001.
5. Chanturia, V.A., Makarov, V. N. Makarov, D.V., and Vasileva, T.N., Nickel Occurrences in Aged Copper and Nickel Ore Processing Tailings, Dokl. RAN, 2004, vol. 399, no. 1.
6. Bortnikov, N.S., Distler, V.V., Vikentev, I.V., et al., Noble Metal Occurrence in Complex Ore: Research Procedures, Quantitative Characteristics, Technological Significance, Problemy mineragenii Rossii (Problems of Minerogeny in Russia), Moscow: GTS RAN, 2012.
7. Blagodatin, Yu.V., Nikolaev, Yu.M., and Chegodaev, V.D., Recovery of Platinum Group Metals from the Norilsk Copper and Nickel Ore Processing Tailings, Tsv. Metally, 1995, no. 12.
8. Dodin, D.A., Izoitko, V.M., Govorova, L.K., and Kovalenko, L.N., Mineralogy of Super-Large Platinum-Bearing Mining Waste, Russian Mineralogical Society Annual Meeting Proc. Modern Mineralogical and Chem
ical Research Methods as the Basis for Finding New Ore Types and Their Processing Technologies, Saint-Petersburg, 2006. 9. Blagodatin, Yu.V., Yatsenko, A.A., Zakharov, B.A., Chegodaev, V.D., and Alekseeva, L.I., Introduction of New Nonferrous and Noble Metal Sources, Tsv. Metally, 2003, nos. 89.
10. Bragin, V.I. and Sviridova, M.L., Platinum-Group Metal Recovery from Copper and Nickel Ore Processing Waste, Gorn. Inform.-Analit. Byull., 2009, no. 12.
11. Fedoseev, I.V., Concentration of Platinum Group Metals from the Norilsk Processing Plant Tailings by Using Magnetic Separation, Tsv. Metally, 2006, no. 3.
12. Bragin, V.I., Zhizhaev, A.M., Fetisov, A.A., Bragina, V.I., and Sviridova, M.L., Nonferrous and Precious Metals Recoverability from Copper and Nickel Ore Processing Waste, Proc. Sci. Conf. Noble and Rare Metals of Siberia and the Far East: Polymetal and Nonstandard Ore Forming Deposits, Irkutsk, 2005.
13. Baksheeva, I.I., Bragin, V.I., and Sviridova, M.L., Platinum and Palladium Occurrence in the Long Storage Tailings, Plaksins Lectures-2010, Kazan, 2010.
14. Baksheeva, I.I., Phase Composition of Weathered Layer of Aged CuNI Ore Processing Waste, Gorn. Inform.-Analit. Byull., 2012, no. 3.
15. Radtke, A.S., Geology of the Carlin Deposit, Nevada, U. S. Geol. Surv. Prof. Paper 1267, 1985.


     ( )
Rambler's Top100   @Mail.ru

. .. 
: 630091, , , , 54
: +7 (383) 205–30–30, . 100 ()
: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© . ..  , 2004–2020.