Rambler's Top100
     « »               
 »  » «- … »  » 2013  » JMS, Vol. 49, No. 4, 2013

JMS, Vol. 49, No. 4, 2013


GEOMECHANICS


KINETICS OF SEISMIC EMISSION IN COAL MINES IN KUZBASS
V. N. Oparin,c, A. F. Emanov, V. I. Vostrikov, and L. V. Tsibizov

The article gives the experimental evidence of effective use of the kinematic criterion χ, derived by Oparin for apparent velocities of pendulum waves based on deterministic description of seismic energy release in the Norilsk mine fields, in assessment of stresses and strains in coal beds in terms of the Polysaevskaya Mine, Kuzbass.

Seismic release development, kinematic characteristics, coupled pendulum waves, coal beds Breevsky and Tolmachevsky, Kuzbass, rockburst hazard criterion χ

REFERENCES
1. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part I: Seismic regime, Journal of Mining Science, 2004, vol. 40, no. 4, pp. 321338.
2. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part II: Oktyabrsky Mine, Journal of Mining Science, 2004, vol. 40, no. 5, pp. 423443.
3. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part III: Taimyrsky Mine, Journal of Mining Science, 2004, vol. 40, no. 6, pp. 539555.
4. Oparin, V.N., Tapsiev, A.P., Vostrikov, V.I., et al., On Possible Causes of Increase in Seismic Activity of Mine Fields in the Oktyabrsky and Taimyrsky Mines of the Norilsk Deposit in 2003. Part VI: Influence of Undermining of Overlying Rock Masses, Journal of Mining Science, 2005, vol. 41, no. 1, pp. 15.
5. Oparin, V.N., Sashurin, A.D., Leontev, A.V., et al., Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh silnogo tekhnogennogo vozdeistviya (Earths Crust Destruction and Self-Organization in the Areas of Powerful Industrial Impact), Novosibirsk: SO RAN, 2012.
6. Oparin, V.N., Sashurin, A.D., Kulakov, G.I., et al., Sovremennaya geodinamika massiva gornykh porod verkhnei chaste litosfery: istoki, parametry, vozdeistvie na obekty nedropolzovaniya (Modern Geodynamics of the Outer Crust of the Earth: Sources, Parameters, Impact), Novosibirsk: SO RAN, 2008.
7. Oparin, V.N., Sashurin, A.D., Yushkin, V.F. et al., Geomekhanicheskie i tekhnicheskie osnovy uvelicheniya nefteotdachi plastov v vibrovolnovykh tekhnologiykh (Geomechanical and Technical Background of Enhanced Oil Recovery in Vibro-Wave Technologies), Novosibirsk: Nauka, 2010.
8. Oparin, V.N., Annin, B.D., Chugui, Yu.V., et al., Metody i izmeritelnye pribory dlya modelirovaniya i naturinykh issledovanii nelineinykh deformatsionno-volnovykh protsessov v blochnykh massivakh gornykh porod (Methods and Instruments for Modeling and Full-Scale Investigation of Nonlinear Deformation-Wave Processes in Block-Structure Rock Masses), Novosibirsk: SO RAN, 2007.
9. Oparin, V.N., Bagaev, S.N., Malovichko, A.A., et al., Metody i sistemy seismodeformatsionnogo monitoring tekhnogennykh zemletryasenii i gornykh udarov (Methods and Systems of Seism-and-Deformation Monitoring of Mining-Induced Earthquakes and Rockbursts), Novosibirsk: SO RAN, 2010.
10. Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., Mine Seismic Data Scanning Method, Dokl. AN, 1993, vol. 333, no. 6.
11. Kurlenya, M.V. and Oparin, V.N., Problems of Nonlinear Geomechanics. Part II, Journal of Mining Science, 2000, vol. 36, no. 4, pp. 305326.
12. Kurlenya, M.V., Oparin, V.N., and Eremenko, A.A., Relation of Linear Block Dimensions of Rocks to Crack Opening in the Structural Hierarchy of Masses, Journal of Mining Science, 1993, vol. 29, no. 3, pp. 197203.
13. Novozhilov, V.V., Teoriya uprugosti (Theory of Elasticity), Leningrad: Sudostroenie, 1958.
14. Feynman, R.P., Leighton, R.B., and Sands, M., Lectures of Physics, Wesley Publishing Company, 1964.
15. Oparin, V.N., Pendulum Waves and Geomechanical Temperature, Proc. 2nd RussiaChina Conf. Nonlinera GeomehnaicalGeodynamic Processes in Deep Mining, Novosibirsk: IGD SO RAN, 2012.
16. Nikolaev, A.V., Problems of Induced Seismicity, Navedennaya seismichnost (Induced Seismicity), Moscow: Nauka, 1994.
17. Holub, K., A Study of Mining-Induced Seismicity in Czech Mines with Longwall Coal Exploitation, Journal of Mining Science, 2007, vol. 43, no. 1, 3239.
18. Emanov, A.F., Emanov, A.A., Leskova, E.V., et al., Seismic Monitoring of the Osinniki Town Area, Kemerovo Region, Zemletryaseniya v Rossi v 2005 godu (Earthquakes in Russia in 2005), Obninks: GS RAN, 2007.
19. Emanov, A.A., Emanov, A.F., Leskova, E.V., et al., City Contract No. 3 Report on Experimental Analysis of Seismicity in the Territory of Polysaevo Town, Novosibirsk: ASF GS SO RAN, 2008.
20. Emanov, A.F., Emanov, A.A., Leskova, E.V., et al., Sesimicity Activation due to Coal Mining in Kuzbass, Fiz. Mezomekh., 2009l no. 12.
21. Semibalamut, V.M. and Rybushkin, A.Yu., A Complex of Autonomous High-Preciision Sesimic Signal Recorders, Proc. Int. Conf. The Third Millennium Challenges of Seismology, Novosibirsk: SO RAN, 2003.
22. Zhahg, H. and Thurber, C.H., Double-Difference Tomography: The method and Its Application to the Hayward Fault, California, Bull. Seism. Soc. Amer., 2003, vol. 93, no. 5.
23. Makarov, A.B., Satov, M.Zh., and Yun, A.B., Mining-Induced Seismicity Monitoring, Diagnostics and Forecasting at the Zhezkazgan Copper Deposit, Tekhnogennaya seismichnost pri gornykh rabotakh: modeli ochagov, prognoz, profilaktika (Mining-Induced Seismicity: Models of Nucleation Sites, Prediction and Precautions), Apatity: GoI KNTs RAN, 2004.
24. Van der Waerden, Mathematical Statistics, New York: Springer-Verlag, 1969.
25. Oparin, V.N., Tapsiev, A.P., Bogdanov, M.N., et al., Sovremennoe sostoyanie, problemy i strategiya razvitiya gornogo proizvodstva na rudnikakh Norilska (Current Condition, Problems and Development Strategy in the Norilsk Mines), Novosibirsk: SO RAN, 2008.
26. Posokhov, G.E., Tekhnologiya podzemnoi razrabotki plastovykh mestorozhdenii (Underground Geotechnology for Stratified Deposits), Freidin. A.M. (Ed.), Novosibirsk: SO RAN, 2012.
27. Oparin, V.N., Yushkin, V.F., Akinin, A.A., and Balmashnova, O.G., A New Scale of Hierarchically Structured Representations as a Characteristic for Ranking Entities in a Geomedium, Journal of Mining Science, 1998, vol. 34, no. 5, pp. 387401.
28. Oparin, V.N. and Tanaino, A.S., Kanonicheskaya shkala ierarkhicheskikh predstavlenii v gornom porodovedeni (Canonical Scale for Hierarchy Representation in the Science on Rocks), Novosibirsk: Nauka, 2011.
29. Kurlenya, M.V., Oparin, V.N., and Vostrikov, V.I., Elastic Wave Packets under Impulse Excitation of Block Media. Pendulum Waves , Dokl. AN, 1993, vol. 333, no. 4.


EFFECT OF PARTIAL WATER FLOODING ON THE STRESSSTRAIN STATE OF THE CROWN PILLAR IN THE AIKHAL MINE
M. V. Kurlenya, V. D. Baryshnikov, and L. N. Gakhova

Based on numerical modeling of stressstrain state of rocks and the in situ deformation monitoring of rocks mass surrounding underground excavations, the authors determine limit criteria of geomechanical stability of mine structural elements in terms of the Aikhal Mine where mining has been transferred under the worked-out open pit bottom. Using the determined criteria, the stressstrain state and subsidence of the crown pillar are assessed, considering current stage of the water table in the open pit. The article gives predictive estimate of the change in the stressstrain state and subsidence of the crown pillar upon the water level raising.

Stresses, strains, rock mass, confining bed, open pit mine

REFERENCES
1. Krainev, B.A., Experimental Studied into Safe Undercutting of Water-Tight Strata in Potash Mines, Aktualnye voprosy dobychi i pererabotki prirodnykh solei (Actual Issues of Rock Salt Mining and Processing), Saint-Petersburg: OAO VNIIgalurgii, 2001.
2. Deshkovsky, V.N., Nevelson, I.S., and Novokshonov, V.I., Rational Approach to Finding Safe Mining Parameters in Potash and Salt Series, Marsheider. Nedpropolz., 2007, no. 1.
3. Ukazania po zashchite rudnikov ot zatopleniya i okhrany podrabatyvaemykh obektov v usloviyakh Verkhnekamskogo mestorozhdeniya kaliinykh solei (Guidelines on Mine Flooding Protection and Undermined Surface Objects Protection in the Upper Kama Potash Deposit Conditions), Saint-Petersburg, 008.
4. Baryakh, A.A., Samodelkina, N.A., and Pankov, I.L., Water-Tight Stratum Failure under Large-Scale Mining. Part I, Journal of Mining Science, 2012, vol. 48, no. 5, pp. 771780.
5. Rzhanitsyn, A.R., Stroitelnaya mekhanika (Construction Mechanics), Moscow: Vyssh. shk. 1991.
6. Baryakh, A.A. and Samodelkina, N.A., Water-Tight Stratum Rupture under Large-Scale Mining. Part II, Journal of Mining Science, 2012, vol. 48, no. 6, pp. 954961.
7. Baryshnikov, V.D. and Gakhova, L.N., Geomechanical Monitoring of the Pit Bottom Rock Mass Mining in the Aikhal Mine, Rudnik budushchego (The Mine of the Future), Zap.-Ural. Mash. Konts., 2010, no. 3.
8. Baryshnikov, V.D. and Gakhova, L.N., Geomechanical Basis of Application of Downward Slice Mining Method in Open Pt Bottom Rock Mass in the Aikhal Mine, Proc. Int. Conf. Geodynamics and Stress State of the Earths Interior, Novosibirsk: IGD SO RAN. 2010.
9. Baryshnikov, V.D. and Gakhova, L.N., Geomehanical Substantiation of Access Road and Stope Faces in Upward Mining of the Reserves Subjacent the Open Pit Bottom in Terms of the Mine Aikhal, Journal of Mining Science, 2008, vol. 44, no. 2, pp. 155162.
10.Bulychev, N.S., Mekhanika podzemnykh sooruzhenii (Mechanics of Underground Structures), Moscow: Nedra, 1989.
11. Kurlenya, M.V., Baryshnikov, V.D., and Gakhova, L.N., Experimental and Analytical Methods for Assessing Stability of Slopes, Journal of Mining Science, 2012, vol. 48, no. 4, pp. 609615.
12. Gakhova, L.N., Block Structured Rock Mass Stress Analysis Program Using Boundary Integral Equations (ELB2D), RosAPO Registration Certificate no. 960814.


USING ACOUSTIC EMISSION MEMORY OF COMPOSITES IN CRITICAL STRESS CONTROL IN ROCK MASSES
V. L. Shkuratnik and P. V. Nikolenko

The regular patterns of initiation and show of acoustic emission memory effect in a composite are experimentally obtained from tests on cloth laminate. The authors illustrate the capacity of cloth laminate as an absolute sensitive stress-to-acoustic emission converter. The designed and tested in-hole sensor enclosing this converter indicates when incremental stress surpasses a pre-assigned critical limit.

Stressstrain state, rock mass, composites, acoustic emission, memory effect, sensor-indicator

REFERENCES
1. Yamshchikov, V.S., Kontrol protsessov gornogo proizvodstva: uchebnik dlya vuzov (Process Control in Mining: College Textbook), Moscow: Nedra, 1989.
2. Yamshchikov, V.S., Shkuratnik, V.L., and Lavrov, A.V., Memory Effects in Rocks (Review), Journal of Mining Science, 1994, vol. 30, no. 5, pp. 463473.
3. Hardy, H.R. (Jr.), Zhang, D., and Zelanko, J.C., Recent Studies of the Kaiser Effect in Geological Materials, Proc. 4th Conf. AE/MA in Geologic Structures and Materials, Clausthal-Zellerfeld: Trans. Tech. Publications, 1989.
4. Filimonov, Y.L., Lavrov, A.V., Shafarenko, Y.M., and Shkuratnik, V.L., Memory Effects in Rock Salt under Triaxial Stress State and Their Use for Stress Measurement in Rock Mass, Rock Mechanics and Rock Engineering, 2001, vol. 34, no. 4.
5. Yamshchikov, V.S., Shkuratnik, V.L., and Lykov, K.G., Stress Measurement in a Rock Bed Based on Emission Memory Effects, Journal of Mining Science, 1990, vol. 26, no. 2, pp. 122127.
6. Yamshchikov, V.S., Shkuratnik, V.L., Lykov, K.G., and Farafonov, V.M., Evaluation of the Stressed-State of a Bed Based on Emission Memory Effects of Rocks in Near-Well Space, Journal of Mining Science, 1991, vol. 27, no. 2, pp. 100103.
7. G. Lubin (Ed.), Handbook of Composites, New-York: Van Nostrand Renhold, 1982.
8. Nikolenko, P.V. and Tsarikov, A.Yu., Laboratory Stand for Mechanical and Acoustic Emission Testing of Specimens Made of Composites, Gorn. Inform.-Analit. Byull., 2013, no. 4.
9. Shkuratnik, V.L. and Nikolenko, P.V., Interpretation Procedure for Acoustic Emission Measurement Based on Kaiser Effect in Rock Mass StressStrain State Assessment, Gorny Zh., 2012, no. 9.
10. Hardy, H.R. (Jr.), Application of Kaiser Effect for the Evaluation of In-Situ Stresses in Salt, Proc. 3rd Conf. Mechanical Behavior of Salt, Clausthal-Zellerfeld: Trans. Tech. Publications, 1993.
11. Li, C. and Nordlund, E., Ultrasonic Verification of the Kaiser Effect in Rocks, Rock Mech. Rock Eng., 1993, vol. 26, no. 4.
12. Baranov, V.M., Gritsenko, A.I., Karasevich, A.M., et al., Akusticheskaya diagnostika i kontrol na predpriyatiyakh toplivno-energeticheskogo kompleksa (Acoustic Diagnostics and Control in Fuel and Energy Industry), Moscow: Nauka, 1998.


IN SITU STRESS STATE ASSESSMENT IN THE NURKAZGAN MINE
A. V. Leontev, A. B. Makarov, and A. Yu. Tarasov

The article reports the results of integrated assessment of in situ stresses in rock mass in the Nurkazgan Mine. The visual observation of underground excavations and instrumental measurements of effective stresses denote the hydrostatic stress state within the studied minefield.

Rock mass, stressstrain state, instrumentation hydraulic fracturing, rock failure

REFERENCES
1. Exploration Survey and Reserves Calculation Report for the Nurkazgan Mine date July 1, 2004, AO Zhezkazgan-geologiya, 2005.
2. Gzovsky, M.V., Osnovy tektonofiziki (Fundamentals of the Tectonophysics), Moscow: Nauka, 1975.
3. Leontev, A.V. and Popov, S.N., Experience from Application of Measurement Hydrofracturing, Gorny Zh., 2003, no. 3.
4. Novopashin, M.D. (Ed.), Sovremennaya geodinamika massiva gornykh porod verkhnei chasti litosfery: istoki, parametry, vozdeistvie na obekty nedropolzovaniya (Modern Geodynamics of the Outer Crust of Earth: Sources, Parameters, Impact), Novosibirsk,: SO RAN, 2008.
5. Melnikov, N.N. (Ed.), Destruktsiya zemnoi kory i protsessy samoorganizatsii v oblastyakh silnogo tekhnogennogo vozdeistviya (Earth Crust Destruction and Self-Organization in the Areas of Heavy Industrial Impact), Novosibirsk: SO RAN, 2012.
6. Makarov, A.B., Prakticheskaya geomekhanika (Practical Geomechanics), Moscow: Gornaya kniga, 2006.


FORECAST OF EXCAVATION STABILITY IN WEAK IRON ORE IN TERMS OF THE YAKOVLSEVSKY DEPOSIT
A. G. Protosenya and V. L. Trushko

The issues of physico-mechanical properties of ore and rocks, measurement of displacements in rock mass around underground excavations, stability of the excavations, selection of types and parameters of supports are studied in terms of the Yakovlevsky iron ore deposit.

Ore, support, arch, stress, strain, excavation, stability, strength

REFERENCES
1. Stavrogin, A.N. and Protosenya, A.G., Mekhanika deformirovaniya i razrusheniya gornykh porod (Rock Deformation and Failure Mechanics), Moscow: Nedra, 1992.
2. Stavrogin, A.N. and Protosenya, A.G., Plastichnost gornykh porod i ustoichivost vyrabotok na bolshikh glubinakh (Plasticity of Rocks and Deep-Level Excavation Stability), Moccow: Nedra, 1985.
3. Bulychev, N.S., Amusin, B.Z., and Olovyanny, A.G., Raschet krepi kapitalnykh gornykh vyrabotok (Calculating Support of Permanent Excavations), Moscow: Nedra, 1974.
4. Instruktsiya po vyboru krepi dlya podgotovitelnykh i gorizontalnykh vyrabotok i shakht OAO Severouralboksitruda (Support Selection Guidelines in Entries and Tunnels and Mines of Severouralboksitruda JSC.), Saint-Petersburg: SPPGI, 2010.
5. Trushko, V.L., Protosenya, A.G., Matveev, P.F., and Sovmen, Kh.M., Geomekhanika massivov i dinamika vyrabotok glubokikh rubnikov (Rock Mechanics and Dynamics for Deep Mine Workings), Saint-Petersburg: Nauka, 2000.


MATHEMATICAL MODELING OF ROCK SPECIMEN DEFORMATION
V. E. Mirenkov and A. A. Krasnovsky

Among the aspects of modeling mathematically deformation of rock specimens, the article analyzes soft and stiff loading. The authors formulate an inverse problem on identification of mechanical properties, boundary conditions and geometry of weak areas using overspecified conditions by the data on measured displacements and acoustic-electromagnetic emission that characterizes rock failure under loading.

Deformation, specimen, elastic model, mechanical characteristics, boundary conditions, displacements, acoustic emission

REFERENCES
1. Mirenkov, V.E. and Kransovsky, A.A., Damage Accumulation in a Piecewise-Homogenous Rock Block under Compression, Journal of Mining Science, 2012, vol. 48, no. 4, pp. 622628.
2. Oparin, V.N., Akinin, A.A., Vostrikov, V.I., and Yushkin, V.F., Nonlinear Deformation processes in the Vicinity of Mine Workings. Part I, Journal of Mining Science, 2003, vol. 39, no. 4, pp. 315322.
3. Oparin, V.N., Tapsiev, A.P., Rozenbaum, M.A., et al., Zonalnaya dezintegratsiya gornykh porod i ustoichivost podzemnykh vyrabotok (Zonal Disintegration of Rocks and Underground Excavation Stability), Novosibirsk: SO RAN, 2008.
4. Nazarov, L.A., Nazarova, L.A., and Kozlov, A.M., Optimization of Operating Mode of a Vibration Source Set for Generation of Wave Fields with the Specified Spatial Distribution, Journal of Mining Science, 2005, vol. 41, no. 1, pp. 2737.
5. Usoltseva, O.M., Nazarova, L.A., Tsoi, P.A., Nazarov, L.A., and Semenov, V.N., Genesis and Evolution of Discontinuities in Geomaterials. Theory and A Laboratory Experiment, Journal of Mining Science, 2013, vol. 49, no. 1, 17.
6. Sheinin, V.I. and Blokhin, D.I., Features of Themromechanical Effects in Rock Salt Samples under Uniaxial Comperession, Journal of Mining Science, 2012, vol. 48, no. 1, pp. 3945.
7. Uzhik, G.V., Metod opredeleniya soprotivleniya obraztsov materialov razrusheniyu ot otryva (Tensile Crack Strength Testing in Materials), Izv. AN SSSR, 1948, no. 10.
8. Oparin, V.N., Yakovitskaya, G.E., Vostretsov, A.G., and Seryakov, V.M., MechanicalElectromagnetic Transformations in Rocks on Failure, Journal of Mining Science, 2013, vol. 49, no. 3, pp. 343356.


THE STRONGEST ROCKBURSTS AND MINING-INDUCED EARTHQUAKES IN RUSSIA
A. V. Lovchikov

Based on the review of the strongest mining-induced rockbursts with the same seismic characteristics recorded in underground mines in Russia, the author compares the events based on their energy parameters. It is shown that the mining-induced seismic events on the Kola Peninsula are still the strongest events.

Rockbursts, mining-induced earthquakes, magnitude, energy class, geodynamic hazard

REFERENCES
1. Lovchikov, A.V., Current Situation in Rockburst Recording, Prediction and Prevention in Mines, Gorn. Inform.-Analit. Byull., 2008, no. 5.
2. Seismic Impact Assessment Methods, Vopr. Inzh. Sesim., 1993, issue 34.
3. Godzikovskaya A. A., Asming, V.E., and Vinogradov, Yu.A., Retrospektivnyi analiz pervichnykh materialov o seismichekikh sobytiyakh , zaregistrirovannykh na Kolskom poluostrove i prilegayushchei territorii v XX veke (Post-Event Analysis of Raw Data on Seismic Events Recorded in the Kola Peninsula and Adjacent Territory in the 20th Century), Moscow: Vash poligr. Partn., 2010.
4. Gabsatarova, I.P., Estimating the magnitude MLV by the Data on Surface Wave of Regional Events in the Kola Peninsula, Proc. 6th Int. Seism. School Advanced Processing and Interpretation of Seismology Data, Obninsk: GS RAN, 2011.
5. Kozyrev, A.A., Kagan, M.M., Konstantinov, K.N., and Zhirov, D.V., Strain-Caused Precursors of an Induced Earthquake in the Kirovsky Mine, Apatit JSC., Proc. Russ. Conf. Geodynamics and Stress State of the Earths Interior, Novosibirsk: IGD SO RAN, 2011.
6. Lovchikov, A.V., Strongest Induced Earthquakes in Russian Mines, Proc. 15th Russ. Foreign. Sci. Conf. Geological Hazards, Yudakhin, F.N. (Ed.), Arkhangelsk: Inst. Ekol. Probl. Sev., ANTs UrO RAN, 2009.
7. Malovichko, A.A., Blinova, T.S., Labadev, A.Yu., and Nekrasova, L.V., Solikamsk Earthquake on Jan 5, 1995, Proc. Int. Symp. SRM-95, Ekaterinburg: UrO RAN, 1997.
8. Geodynamicheskaya bezopasnost pri osvoenii nedr i zemnoi poverkhnosti (Geodynamic Safety of Underground and Surface Mineral Mining), Apatity: KNTs RAN, 2003.
9. Katalog gornykh udarov na rudnykh i nerudnykh mestorozhdeniyakh (Catalog of Rockbursts in Metal and Nonmetal Mines), Leningrad: VNIMI, 1989.
10. http://www.nakanune.ru/news/2004/04/06 
11. Tomilin, N.G., Voinov, K.A., Selivonik, V.G., and Glotov, S.V., Induced Earthquake as a Consequence of Mine Instability, Proc. Russ. Conf. Geodynamics and Stress State of the Earths Interior, Novosibirsk: IGD SO RAN, 2011.
12. Lomakin, V.S. and Khalevin, N.I., Rockbursts in Real Seismicity in the Urals, Geodynamicheskaya bezopasnost pri osvoenii nedr i zemnoi poverkhnosti (Geodynamic Safety of Underground and Surface Mineral Mining), Apatity: KNTs RAN, 2002.
13. Ilin, A.M., Antipov, V.N., and Neimark, A.M., Bezopasnost truda v gornoi promyshlennosti (Occupational Safety in Mining), Moscow: Nedra, 1991.
14. Lomakin, V.S. and Yunusov, V.F., Real-Time Seismological Control in Mines, Prognoz i predotvrashchenie gornykh udarov na rudnykh mestorozhdeniyakh (Pockburst Prediction and Prevention in Ore Mines), Apatity: KNTs RAN, 1993.
15. Lovchikov, A.V., Estimate of Geodynamic Hazard in Mines by Energy of Seismic Events, Gorny Zh., 2004, no. 10.
16. Laptev, B.V., Emergency Situations in the Upper Kama Potassium Deposit, Bezop. Tr. Prom., 2009, no. 8.
17. Lovchikov, A.V., Mining-Induced Seismic Event as a Mine Geodynamic Hazard Criterion, Proc. Russ. Conf. Geodynamics and Stress State of the Earths Interior, Novosibirsk: IGD SO RAN, 2010.


ROCK FAILURE


QUASI-BRITTLE ROCK FAILURE MODEL
V. M. Kornev and A. A. Zinovev

The article discusses a quasi-brittle rock failure model, analytical expressions constructed for limit stresses using necessary and sufficient criteria of structured rock failure, normal tensile stresses in rock mass with fracture, quasi-brittle failure diagram constructed using approximation of two-section kinked stressstrain curves obtained in coal under tension, and critical stress estimates.

Quasi-brittle failure, structured materials, coal, inner fracture, necessary and sufficient criteria

REFERENCES
1. Kershtein, I.M., Klyushnikov, V.D., Lomakin, E.V., and Shesterikov, S.A., Osnovy eksperimentalnoi mekhaniki razrusheniya (Fundamentals of the Experimental Failure Mechanics), Moscow: MGU, 1989.
2. Leonov, M.Ya. and Panasyuk, V.V., Minute Crack Growth in a Solid Body, Prikl. Mekh., 1959, no. 4.
3. Dugdale, D.S., Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids, 1960, vol. 8.
4. Kornev, V.M., Generalized Sufficient Strength Criterion. Pre-Failure Region Description, Prikl. Mekh. Tekh. Fiz., 2002, vol. 43, no. 5.
5. Kornev, V.M., Stress Distribution and Fracture Opening in the Pre-Failure Region (NeiberNovozhilov Approach), Fiz. Mezomekh., 2004, vol. 7, no. 3.
6. Kornev, V.M., Appraisal Pattern of Quasi-Brittle Failure of Bodies with Structural Hierarchy. Multiscale Necessary and Sufficient Criteria, Fiz. Mezomekh.m 2010, vol. 13, no. 1.
7. Savruk, M.P., Dvumernye zadachi uprugosti dlya tel s treshchinami (Two-Dimensional Elasticity Problems for Bodies with Fractures), Kiev: Naukova dumka, 1981.
8. Okubo, S., Fukui, K., and Qi Qingxin, Uniaxial Compression and Tension Tests of Anthracite and Loading Rate Dependence of Peak Strength, Int. J. Coal Geol., 2006, no. 68.
9. Stavrogin, A.N., Tarasov, B.G., Shirsek, O.A., and Pevzner, E.D., Strength and Deformation of Rocks before and after the Breakdown Point, Journal of Mining Science, 1981, vol. 17, no. 6, pp. 487493.
10. Shestakova, O.E., Visual Diagnostics of Natural and Process Ranks of Coal, Vestn. KuzGTU, 2010, no. 1.
11. Chanyshev, A.I., Belousova, O.E., and Lukyashko, O.A., Mathematical Models of Block Media in Problems of Geomechanics. Part IV: Interaction of an Induced Structure and Stress State, Journal of Mining Science, 2005, vol. 41, no. 4, pp. 298311.
12. Gentzis, T., Deisman, N., and Chalaturnyk, R.J., Geomechanical Properties and Permeability of Coals from the Foothills and Mountain Regions of Western Canada, 2007.
13. Kornev, V.M., Patterns of Quasi-Brittle Failure of Bodies with Structural Hierarchy under Low-Cycle Loading, Fiz. Mezomekh., 2011, vol. 14, no. 5.


MINERAL MINING TECHNOLOGY


STOCHASTIC MINE PRODUCTION SCHEDULING WITH MULTIPLE PROCESSES: APPLICATION AT ESCONDIDA NORTE, CHILE
L. Montiel and R. Dimitrakopoulos

Mining complexes can contain multiple mines operating simultaneously along with multiple processing streams, stockpiles and products. Stochastic optimization methods developed to date generateonly local optimal solutions in the sense that they do not consider the entire mining complex. This paper presents an extension of a multi-stage method used for generating long-term risk-based mine production schedules, to operations with multiple rock types and processing streams. The developed method uses a simulated annealing based algorithm during the optimization stage, seeking to minimize deviations from production targets for waste and different ore processing streams. The proposed approach is applied at Escondida Norte copper deposit, Chile, in which sulphide, oxide, mixed and waste materials are present with milling, bio-leaching and acid-leaching being the available processing streams. The stochastic schedule generates expected deviations from mill and waste production targets smaller than 5%, which avoid indirect costs associated to idle capacities. A schedule generated conventionally exhibits expected deviations of the order of 20%.

Mining complex, simulated annealing, multiple ore processing streams, mine production scheduling

REFERENCES
1. Dimitrakopoulos, R., Farrely, C., and Godoy, M., Moving Forward from Traditional Optimization: Grade Uncertainty and Risk Effects in Open Pit Mine Design, Transactions of the IMM, Section A Mining Industry, 2002, vol. 111.
2. Ravenscroft, P., Risk Analysis for Mine Scheduling by Conditional Simulation, IMM Transactions, Mining Technology, 1992, vol. 101.
3. Dowd, P., Risk in Mineral Projects: Analysis, Perception and Management, IMM Transactions, Mining Industry, 1997, vol. 106.
4. Godoy, M., The Effective Management of Geological Risk in Long-term Production Scheduling of Open Pit Mines, PhD Thesis, University of Queensland, Brisbane, Australia, 2003.
5. Dimitrakopoulos, R., Stochastic Optimization for Strategic Mine Planning: a Decade of Developments, Journal of Mining Science, 2011, vol. 47.
6. Ramazan, S., and Dimitrakopoulos, R., Production Scheduling with Uncertain Supply: a New Solution to the Open Pit Mining Problem, Optimization and Engineering, DOI 10.1007/s11081–012–9186–2, 2012.
7. Leite, A. and Dimitrakopoulos, R., Production Scheduling under Metal UncertaintyApplication of Stochastic Mathematical Programming at an Open Pit Copper Mine and Comparison to Conventional Scheduling, The Australasian Institute of Mining and Metallurgy, Spectrum Series, 2010, vol. 17.
8. Albor, F. and Dimitrakopoulos, R., Algorithmic Approach to Pushback Design Based on Stochastic Programming: Method, Application and Comparisons, IMM Transactions, Mining Technology, 2010, vol. 119.
9. Menabde, M., Froyland, G., Stone, P., and Yeates, G., Mining Schedule Optimization for Conditionally Simulated Orebodies, The Australasian Institute of Mining and Metallurgy, Spectrum Series, 2007, vol. 14.
10. Meagher, C., Abdel Sabour, S.A., and Dimitrakopoulos, R., Pushback Design of Open Pit Mines under Geological and Market Uncertainties, The Australasian Institute of Mining and Metallurgy, Spectrum Series, 2010, vol. 17.
11. Asad, M. W. A. and Dimitrakopoulos, R., Implementing a Parametric Maximum Flow Algorithm for Optimal Open Pit Mine Design under Uncertain Supply and Demand, Journal of the Operational Research Society, doi:10.1057/jors.2012.26, 2012.
12. Lamghari, A. and Dimitrakopoulos, R., A Diversified Tabu Search Approach for the Open-pit Mine Production Scheduling Problem with Metal Uncertainty, European Journal of Operational Research, 2012, vol. 222.
13. Godoy, M. and Dimitrakopoulos, R., Managing Risk and Waste Mining in Long-Term Production Scheduling, SME Transactions, 2004, vol. 316.
14. Metropolis, N., Rosenbluth, A., Rosenbluth, N., Teller, A., and Teller, E., Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics 1953, vol. 21.
15. Kirkpatrick, S., Gellat, C., and Vecchi, M., Optimization by Simulated Annealing, Science, 1983, vol. 220.
16. S. Geman, S. and Geman, D., Stochastic Relaxation, Gibbs Distribution and the Bayesian Restoration of Images, IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-6, 1984 
17. Leite, A. and Dimitrakopoulos, R., Stochastic Optimization Model for Open Pit Mine Planning: Application and Risk Analysis at a Copper Deposit, IMM Transactions, Mining Technology, 2007, vol. 116.
18. Albor, F. and Dimitrakopoulos, R., Stochastic Mine Design Optimization Based on Simulated Annealing: Pit Limits, Production Schedules, Multiple Orebody Scenarios and Sensitivity Analysis, IMM Transactions, Mining Technology, 2009, vol. 118.
19. Whittle, J., The Global Optimizer WorksWhat Next? The Australasian Institute of Mining and Metallurgy, Spectrum Series, 2010, vol. 17.
20. Goodfellow, R. and Dimitrakopoulos, R., Algorithmic Integration of Geological Uncertainty in Pushback Designs for Complex Multiprocess Open Pit Mines, IMM Transactions, Mining Technology, 2013, vol. 122.
21. Goovaerts, P., Geostatistics for Natural Resources Evaluation, Oxford Univaeeity Press, 1997.
22. Rondon, O., Teaching Aid:Minimum/Maximum Autocorrelation Factors for Joint Simulation of Attributes, Mathematical Geosciences, 2012, vol. 44.
23. Zhang, T., Pedersen, S.I., Knudby, Ch. And McCormick, D. Memory-Efficient Categorical Multi-Point Statistics Algorithms Based on Compact Search Trees, Mathematical Geosciences, 2012, vol. 44.
24. Godoy, M., and Dimitrakopoulos, R., A Risk Analysis Based Framework for Strategic Mine Planning and DesignMethod and Application, Journal of Mining Science, 2011, vol. 47.
25. Whittle, J., A Decade of Open Pit Mine Planning and Optimizationthe Craft of Turning Algorithms into Packages, in: APCOM’99 Computer Applications in the Minerals Industries 28th International Symposium, Colorado School of Mines, Golden, 1999.


FIRE-HAZARDOUS ORE MINING AND STOCKPILING TECHNOLOGY
V. Kh. Kumykov and T. M. Kumykova

The article reports experimental research and in situ study of oxidation and ignition factors in opencast mining of fire-hazardous ore. The authors make recommendations on spontaneously flammable ore extraction and storage as well as prevention of endogenous fires and fire protection in sulfide ore stockpiles.

Opencast polymetal ore mining, spontaneous ignition, endogeneous fires, excavation, lengthway and cross cuts, working bench, stokpile, injector, inhibitor

REFERENCES
1. Obosnovanie parametrov sistemy razrabotki pri selektivnoi dobyche tekhnologicheskikh tipov i sklonnykh k samovozgoraniyu rud Dalnezapadnogo rudnika: inform. karta (Basis for Selective Mining Parameters for Technological and Self-Ignition Hazardous Ore of the Far West Mine: Information Map), Ust-Kamenogorsk: VNIITsvetmet, 1991.
2. Kolpakova, G.P., Manakov, V.Ya., et al., Effect of Some Inorganic Matters of CopperNickel Ore Souring, Unipromed Transactions, Sverdlovsk, 1976.
3. Akhmedzhanov, T.K. and Zhanbatyrov, A.A., Change of the Temperature Regime in the Bulk of Souring Sulfide Ore, Povyshenie bezopasnosti rabot i sovershenstvovanie provetrivaniya na gornodobyvayushchikh predpriyatiyakh Kazakhstana (Improvement of Mining Safety and Airing in Mines in Kazakhstan), Alma-Ata, 1982.
4. Manakov, V.Ya., Sulfide and Complex Ore Classification by Rate of Its Self-Ignition Hazard, Unipromed Transactions, Sverdlovsk, 1978.
5. Kumykov, V.Kh., Toguzov, M.Z., and Kumykova, T.M., Experimental Estimate of Fireproof Mining Period in Self-Ignition Hazardous Ore Blocks, Int. Sci. Conf. Proc. Problems of Mineral Exploration, Extraction and Processing in Zhezkazgan Region Mines, Zhezkazgan, 1997.
6. Kumykov, V.Kh., Luker, L.M., et al., Authors Certificate no. 1432247 1 SU kl.  21 F 5/00, Byull. Izobret., 1988, no. 39.
7. Kumykov, V.Kh., Shestakov, V.A., Kumykova, T.M., et al., Authors Certificate no. 1640445  1 SU kl.  21 F 5/00 07.04.91, Byull. Izobret., 1991, no. 13.
8. Kumykov, V.Kh., Toguzov, M.Z., et al., Authors Certificate no. 1710776  1 SU kl.  21 F 5/00, Byull. Izobret., 1992, no. 5.
9. Kumykov, V.Kh., Kumykova, T.M., and Toguzov, M.Z., Pre-Patent of Invention no. KZ (B) (11) 505, Byull. Izobret,, 1997, no. 3.


USE OF THE COMBINED IMPACT CRUSHER DKD-300 IN THE DRY CONCENTRATION SCHEME AT ZARNITSA KIMBERLITE PIPE
A. I. Matveev, E. S. Lvov, and D. A. Osipov

The article describes experimental destruction of kimberlite ore and impact crushers and gives grounds for application of the combined impact crusher DKD-300 at one of the crushing stages within the dry concentration scheme at the Zarnitsa kimberlite pipe project.

Crushing, crusher, dissociation, kimberlite ore, preservation, crystals, circulating load

REFERENCES
1. Kulikov, B.V., Zuev, V.V., Vainshenker, I.A., and Mitenko, G.A., Minerlogicheskii spravochnik tekhnologa-obogatitelya (Mineralogical Handbook for Dresser-Technologist), Leningrad: Nedra, 1985.
2. Matveev, A.I. and Lvov, E.S., Fluorite Exposure under Impact Crushing in Combined Action Crusher DKD-300, Gorn. Inform.-Analit. Byull., 2011, no. 10.
3. Matveev, A.I., Vinokurov, V.P., Grigorev, A.N., and Monastyrev, A.M., Russian Federation patent no. 2111055, Byull. Izobret., 1998, no. 14.
4. Grigorev, Yu.M., Matveev, A.I., Prokapenko, A.V., and Savitsky, L.V., Combined Action Crusher DKD-300 Trial at Processing Plant no. 12 of the Udachninsky Mining-and-Processing Integrated Works in Treatment of Kimberlite Ore Extracted from the Zarnitsa Pipe, Nauka Obraz., 2012, no. 2.
5. Lvov, E.S., Matveev, A.I., and Grigoriev, Yu. M., Studies into the Zarnitsa Kimberlite Pipe Ore Disintegration in the Combined Action Crusher DKD-300, Vestn. M. K. Amosov SVFU, 2012, vol. 9, no. 2.


SCIENCE OF MINING MACHINES


MODELING THE STRIKING HEADIMPACT TOOLROCK MASS INTERACTION
L. V. Gorodilov, V. P. Efimov, and V. G. Kudryavtsev

The authors have designed a stand with a pendulum drop hammer to model the hammer headimpact toolrock mass interaction. The rock mass is simulated by an adjustable gasliquid dampener, metal plate and marble block. The comparison analysis includes measured impact pulses in the striking headand the impact tool, and the influence of the striking headvelocity recovery factors on interaction of the striking headand impact tool with the dampener and rock block.

Hammer head, tool, dampener, pendulum drop hammer, impact pulse, rock mass

REFERENCES
1. Gorodilov, L.V., Fundamentals for the Theory of 3D Hydropercussive Members for Mining and Construction Machines, Dr. Tech. Sci. Dissertation, Novosibirsk: IGD SO RAN, 2010.
2. Gorodilov, L.V., Analysis of the Dynamics of Two-Way Hydropercussion Systems. Part II: Influence of Design Factors and Their Interaction with Rocks, Journal of Mining Science, 2013, vol. 49, no. 3, pp. 465474.
3. Alimov, O.D. and Basov, S.A., Gidravlicheskie vibroudarnye sistemy (Hydraulic Vibro-Percussion Systems), Moscow: Nauka, 1990.
4. Chervov, V.V. and Smolentsev, A.S., Test Stand for Pneumatic Hammers, Journal of Mining Science, 2007, vol. 43, no. 6, pp. 618624.
5. Fadeev, P.Ya., Fadeev, V.Ya., and Gorodilov, L. V. Russian Federation patent no. 2438108, Byull. Izobret., 2011, no. 36.
6. Gorodilov, L.V. and Kudryavtsev, V.G., Modeling the Striking Element Velocity Recovery Factor, Proc. Int. Conf. Fundamental Problems of Geoenvironment Formation under Industrial Impact, Novosibirsk: IGD SO RAN, 2010.


MONITORING TECHNICAL STATE OF TRANSPORTATION VEHICLES AND PRODUCTION MACHINES
A. L. Manakov, A. A. Igumnov, and S. A. Kolarzh

The article describes the design of the unique monitoring system for technical state of transportation vehicles and production machines used in mining and construction. The introduction of the system will cut down expenditures due to sudden machine failure, and will increase efficiency and capacity of the machines.

Engineering diagnostics, technical state monitoring, remaining life expectancy, maintenance, sudden failure, test parameters

REFERENCES
1. Murakami, T. and Saigo, T., Development of Vehicle Health Monitoring System (VHMS) in webCARE for Large-Sized Construction Machine, Komatsu Technical Report, Japan, 2002.
2. Vital Information Management System (VIMS): System Operation Testing and Ddjusting, Caterpillar, Inc., 1999.
3. Manakov, A.L., Igumnov, A.A., and Kirpichnikov, A.Yu., Russian Federation patent application no. 2012142455/08(068292) RF, MPK G07C 5/00, Technical State Monitoring System for Vehicles, 2012.
4. RF State Standard 20911–89, Diagnostic Engineering. Terms and Definitions, Moscow: Izd. standartov, 1991.
5. Sergeev, A.G. and Yutt, V.E., Diagnostirovanie elektrooborudovanie avtomobilei (Electrics Diagnostics in Vehicles), Moscow: Transport, 1987.
6. RF State Standard 27.410–87, Machinery Reliability. Performance Control Methods and Reliability Test Schedules, Moscow: Izd. standartov, 1989.


MINERAL DRESSING


ELECTROCHEMICAL POLARIZATION EFFECT ON SURFACE COMPOSITION, ELECTROCHEMICAL CHARACTERISTICS AND ADSORPTION PROPERTIES OF PYRITE, ARSENOPYRITE AND CHALCOPYRITE DURING FLOTATION
T. N. Matveeva, V. A. Chanturia, N. K. Gromova, L. B. Lantsova, and E. V. Koporulina

The article presents experimental research of the influence exerted by electrochemical polarization on electrode potential, phase composition of surface compounds, adsorption of collector and floatability of basic sulfides of gold-bearing ore. It is shown that phase composition of surface compounds generated under different polarization modes affects adsorption of collectors and floatability of minerals.

Electrochemical polarization, sulfide minerals, flotation

REFERENCES
1. Chanturia, V.A. and Vigdergaus, V.E., Elektrokhimiya sulfidov (Electrochemistry of Sulfides), Moscow: Ruda Metally, 2008.
2. Chanturia, V.A., Lunin, V.D., Matveeva, T.N., and Ivanov, V.A., Electrochemical Preparation of SlurryEffectivization of CopperNickel Ore Flotation, Tsvet. Metally, 1992, no. 11.
3. Chanturia, V.A., Vigdergauz, V.E., Teplyakova, M.V., and Gromova, N.K., Potentiostatic Treatment of Mineral Suspension to Regulate Their Flotation Abilities, Elektron. Obrabot. Mater., 1988, no. 2.
4. Chanturia, V.A., Fedorov, A.A., and Matveeva, T.N., Some Basic Mineralogical and Electrophysical Characteristics of Auriferrous Pyrite and Arsenopyrite Flotation, The European Journal of Mineral Processing and Environmental Protection, 2003, vol. 3, no. 2.
5. Woods, R., Electrochemistry of Sulfide Flotation, Principals of Mineral Flotation, Parkville, 1984.
6. Panayotov, V. and Panayotova, M., Electrochemical Selection of Polymetallic Ores, Proc. 223rd IMPC, Istanbul, 2006, vol. 1.
7. Wang, D., Qin, W., Gu, G., Song, Y., and Dong, Q., Electrochemistry of Flotation. The Potential Control Flotation Technology of Sulfide Minerals Proc. 223rd IMPC, Istanbul, 2006, vol. 1.
8. Chattopadhyay, A. and Gorain, B., Gold Deportment Studies on a CopperGold OreA Systematic Approach to Quantitative Mineralogy Focusing on Diagnostic Metallurgy, Proc. 26th IMPC, New-Delhi, 2012.
9. Agorhom, E.A., Swierczek, Z., Skinner, W., and Zanin, M., Combined QXRDQEMSCAN Mineralogical Analysis of a Porphyry CopperGold Ore for the Optimization of the Flotation Strategy, Proc. 26th IMPC, New-Delhi, 2012.
10. Chanturia, V.A., Bunin, I.Zh., Kovalev, T.A., and Koporulina, E.V., Formation of Micro- and Nano-Phases on the Surface of Sulfide Minerals under the Action of Nanosecond Electromagnetic Pulses, Izv. RAN, Series: Physics, 2012, vol. 76, no. 7.


TECHNOLOGICAL AND ECONOMIC EFFECT OF NONMECHANICAL ENERGY USE IN REBELLIOUS MINERAL PROCESSING
V. I. Rostovtsev

Based on the nonmechanical energy deposition tests aimed at intensification of destruction and processing of rebellious minerals, it is found that mineral treatment by accelerated electron flow enhances technological performance of mineral processes and is cost-effective: metal extraction grows by 27% and processing performance is enhanced 2.2 times.

Minerals, nonmechanical energy deposition, ore preparation, processing, technological and economic efficiency

REFERENCES
1. Chanturia, V.A. and Malyarov, P.V., Review of the World Technological Advancement in Disintegration of Mineral during Processing, Proc. Int. Conf. Plaksins Lectures2012, Petrozavodsk: KNTS RAN, 2012.
2. Chanturia, V.A. and Bunin, I.Zh., Non-Traditional High-Energy Processes for Disintegration and Exposure of Finely Disseminated Mineral Complexes, Journal of Mining Science, 2007, vol. 43, no. 3, pp. 311330.
3. Bochkarev, G.R., Pushkareva, G.I., and Rostovtsev, V.I., Intensification of Ore Concentration and Sorption Extraction of Metals from Technogenic Raw Material, Journal of Mining Science, 2007, vol. 43, no. 3, pp. 331340.
4. Kondratev, S.A., Reagenty-sobirately v elementarnom akte flotatsii (Reagents-Collectors in Unit Process of Flotation), Novosibirsk: SO RAN, 2012.
5. Kondratev, S.A., Kotova, O.B., and Rostovtsev, V.I., Intergrain Boundaries in the Processes of Preparation and Dressing of Rebellious Minerals and Mining Waste: Quantum-Mechanical Considerations, Izv. Komi NTS UrO RAN, 2010, no. 4.
6. Chanturia, V.A., Trubetskoy, K.N., Viktorov, S.D., and Bunin, I.Zh., Nanochastitsy v protsessakh razrusheniya i vskrytiya (Nanopartiles in Failure and Unlocking Processes), Moscow: IPKON RAN, 2006.
7. Chanturia, V.A. and Bunin, I.Zh., Non-Conventional Methods of Selective Disintegration of Finely Dispersed Mineral Complexes of Noble Metals, Proc. All-Russian Sci. Conf. New Technologies in the Earth Sciences and in Mining, Nalchik: KBGU, 2012.
8. Plaksin, I.N., Shafeev, R.Sh., Chanturia, V.A., and Yakushkin, V.P., Ionization Radiation Effect of Flotation Properties of Some Minerals, Obogashchenie poleznykh iskopaemykh: izbr. trudy (Mineral Processing: Selectals), Moscow: Nauka, 1970.
9. Chanturia, V.A. and Vigdergauz, V.E., Scientific Basis and Prospects of Industrial Application of the Accelerated Electron Energy in Mineral Processing, Gorny Zh., 1995, no. 7.
10. Kondratev, S.A., Bochkarev, G.R., and Rostovtsev, V.I., Intensification of Ore Preoaration and Dressing Using Radiation Energy Effect, Proc. All-Russian Sci. Proc. Kulagins Lectures2008, Chita, 2008.
11. Bochkarev, G.R., et. al., Prospects of Electron Accelerators Used for Realizing Effective Low-Cost Technologies of Mineral Processing, Proc. 20th Int. Mineral Processing Cong., Aachen: Clausthal-Zellerfeld, GDMB, 1997, vol. 1.
12. Veigelt, Yu.P. and Rostovtsev, V.I., Intensifying the Beneficiation of the Norilsk CopperNickel Ores by Energy Effects, Journal of Mining Science, 2000, vol. 36, no. 6, pp. 595598.
13. Bochkarev, G.R., Veigelt, Yu.P., and Rostovtsev, V.I., Improvement in Ore Beneficiation Technology of Complex Substance Compositions, Journal of Mining Science, 1999, vol. 35, no. 5, pp. 536540.
14. Rostovtsev, V.I., Theoretical Basis and Common Use of Electrochemical and Radiation (Accelerated Electrons) Treatment in Ore Preparation and Mineral Processing, Vestn. ChitGUI, vol. 65, no. 8.
15. Rostovstev, V.I., Scientific Grounding and Development of Intensifying Energy Treatments of Solid and Liquid Phases in Rebellious Mineral Raw Material Processing, Dr. Tech. Sci. Dissertation, Chita, 2012.
16. Vilensky, P.L., Livshits, V.N., and Smolyak, S.A., Otsenka effektivnosti investitsionnykh proektov: Teoriya i praktika (Investment Project Efficiency Evaluation: Theory and Practice), Moscow: Delo, 2001.


ION MODEL OF PHYSICOCHEMICAL KINETICS OF. A. COLLECTORS SORPTIVE LAYER FORMATION ON GALENA GRAIN SURFACE
B. E. Goryachev and A. A. Nikolaev

In terms of galena, the authors specify construction principles for ion modeling of kinetics surface layer formationo on grains of sulfide minerals of nonferrous heavy metals during flotation. The physical sense of the models consists in connection of parameters of ions within liquid phase of flotation pulp with relative fractions of mineral grain surface. Commercial tests proved the theoretical concept on formation of sorptive layer of sulfhydryl collectors on the surface of sulfide mineral grains under flotation conditions.

Flotation, hydrophobic behavior, relative surface fraction, sorptive layer of collector, ion content of liquid phase of flotation pulp, flotation agents, sulfide minerals

EFERENCES
1. Soroker, L.V. and Shvidenko, A.A., Upravlenie protsessom flotatsii (Flotation Regulation), Moscow: Nedra, 1979.
2. Abramov, A.A., Teoreticheskie osnovy optimizatsii selektivnoi flotatsii (Theoretical Basis fir Selective Flotation Optimization), Moscow, Nedra, 1978.
3. Abramov, A.A., Mechanism of Flotation of Lead, Copper and Iron Sulfide Minerals with Ion Cyanides, Trudy Inst. Mekhanobr., 1974, no. 139.
4. Abramov, A.A., Avdokhin, V.M., Eropkin, Yu.I., et al., Chemical Feeding Optimization in the Selecive Flotation of LeadCopper Concentrate of Complex Composition, Obog. Rud, 1976, no. 6.
5. Goryachev, B.E., Model of Sorptive Layer Formation on the Surface of Nonferrous Heavy Metal Sulfides, Tsv. Metally, 1989, no. 12.
6. Damaskin, B.B. and Petri, O.A., VVedenie v eletktrokhimichskuyu kinetiku (Introduction into Electrochemical Kinetics), Moscow: Vyssh. Shk., 1975.
7. Delahay, P., Double Layer and Electrode Kinetics, New York: Wiley, 1965.
8. Frumkin, A.N., Bagotsky, V.S., Iofa, Z.A., et al., Kinetika elektrodnykh protsessov (Electrode Kinetics), Moscow: MGU, 1952.
9. Plaksin, I.N. and Shafeev, R.Sh., Mechanism of Electrochemical Heterogeneity at the Surface of Sulfide Minerals, Dokl. AN SSSR, 1959, vol. 125, no. 3.
10. Goryachev, B.E. and Nikolaev, A.A., Galena and Alkali Metal Xanthate Interaction in Alkaline Conditions, Journal of Mining Science, 2012, vol. 48, no. 6, pp. 10581064.
11. Goryachev, B.E. and Nikolaev, A.A., Galena Oxidation Mechanism, Journal of Mining Science, 2012, vol. 48, no. 2, pp. 354362.
12. Goryachev, B.E., Nikolaev, A.A., and Lyakisheva, L.N., Electrochemistry of Galena Oxidation as the Basis for Optimization of Agent Modes in Flotation of Polymetallic Ore, Journal of Mining Science, 2010, vol. 46, no. 6, pp. 681689.
13. Goryachev, B.E., Nikolaev, A.A., and Lyakisheva, L.N., Electrochemical Kinetics of GalebaSulfhydryl Collector Interaction as the Basis to Develop Ion Models of Sorption-Layer Formation on the Surface of Slphide Minerals, Journal of Mining Science, 2011, vol. 47, no. 3, pp. 382389.
14. Chanturia, V.A. and Vigdergauz, V.E., Elektrokhimiya sulfidov. Teoriya i praktika flotatsii (Electrochemistry of Sulfides. Theory and Practice of Flotation), Moscow: Ruda Metally, 2008.
15. Woodcock, I.T. and Jones, M.H., Chemical Environment in Australian LeadZinc Flotation Plant Pulps: I. pH, Redox Potentials and Oxygen Concentrations, Proc. Aust. Inst. Mining and Met., 1970, no. 235.
16. Woodcock, I.T. and Jones, M.H., Chemical Environment in Australian LeadZinc Flotation Plant Pulps: II. Collector Residuals, Metals in Solution and Other Parameters, Proc. Aust. Inst. Mining and Met., 1970, no. 235.
17. Goryachev, B.E. and Nikolaev, A.A., Principles of Kinetic Ion Modeling of Adsorptive Collector Layer at the Surface of Nonferrous Heavy Metal Sulfides, Journal of Mining Science, 2013, vol. 49, no. 3, pp. 499506.
18. Goryachev, B.E. and Nikolaev, A.A., Interconnection between Physical-Chemical Characteristics of Two-Component Solid Surface Wetting and Floatability of the Same Surface Particles, Journal of Mining Science, 2006, viol. 42, no. 3, pp. 296303.
19. Keshe, G., Korroziya metallov. Fiziko-khimicheskie printsipy i aktualnye problem (Corrosion of Metals. Physicochemical Principles and Actual Problems), Moscow: Metallurgiya, 1984.
20. Goryachev, B.E., Instability of Bulk Flotation of Particles with Chemically Heterogeneous Surface (Discussion), Tsv. Metally, 2005, no. 8.
21. Mitrofanov, S.I., Barsky, L.A., and Samygin, V.D., Issledovanie poleznykh iskopaemykh na obogatimost (Study into Mineral Preparability), Moscow: Nedra, 1972.
22. Neiman, V.G., Reshenie nauchnykh inzhenernykh i ekonomicheskikh zadach s pomoshchyu PPP STATGRAPHICS (Engineering and Economic Decision-Making Using STRATGRAPHICS Application), Moscow: Pamyat, 1992.


X-RAY CRYSTAL ANALYSIS TO FORECAST EFFICIENCY OF MECHANICAL PRE-ACTIVATION OF LOPARITE CONCENTRATE
E. V. Bogatyreva, A. G. Ermilov, and O. V. Khokhlova

It is possible to forecast efficiency of mechanical activation of loparite concentrate to make its subsequent nitric-acid leaching fast using the X-ray crystal analysis data. It is found that the type of accumulated energy influences the energy of activation and reactivity of loparite. The authors suggest an expression to estimate recovery of rare earth elements in nitric-acid solution versus energy of structural changes caused in loparite by mechanical activation and leaching.

Loparite concentrate, mechanical activation, nitric-acid leaching, X-ray crustal analysis

REFERENCES
1. Kazantsev, V.V., Prospective Sound Management of Rare Earths Formations in Russia, Proc. Int. Conf. Rare Earths: Geology, Chemistry, Production and Use, Moscow, 2012.
2. Nosovsky, A.M., Development of the Rare Earths Production in Russia, Proc. Int. Conf. Rare Earths: Geology, Chemistry, Production and Use, Moscow, 2012.
3. Drobot, D.V. (Ed.), Fundamentalnye problem Rossiskoi metallurgii na poroge 21 v. T. 3: Metallurgiya redkikh i rasseyanykh elementov (Fundamental Problems of Metallurgical Industry in Russia at the Turn of the Century. Vol. 3: Metallurgy of Rare and Trace Elements), Moscow: RAN, 1999.
4. Medvedev, A.S., Vyshchelachivanie i sposoby ego intensifikatsii (Leaching and Its Intensification), Moscow: MISiS, 2005.
5. Ermilov, A.G., Safonov, V.V., Doroshko, L.F., et al., X-Ray Study-Aided Estimate of Energy Amount Stored under Mechanical Pre-Activation, Izv. vuzov, Tsv. Metall., 2002, no. 3.
6. Shelekhiv, E.V. and Sviridova, T.A., X-Ray Analyzer for Polycrystals, MiTom, 2000, no. 8.
7. Zuev, V.V., Aksenova, G.A., Mochalov, N.A., et al., Assessment of Properties of Mineral and Inorganic Crystal Lattices Based on the Values of Their Specific Energies, Obog. Rud, 1999, nos. 1 and 2.
8. Bogatyreva, E.V., Ermilov, A.G., Sviridova, T.A., Savina, O.S., and Podshibyakina, K.V., Effect of Mechanical Activation Time on Reactivity of Wlframitre Concentrates, Neorg. Mater., 2011, vol. 47, no. 6.
9. Voldman, G.M. and Zelikman, A.N., Teoriya gidrometallurgicheskikh protsessov (Theory of Hydrometallurgical Processes), Moscow: Metallurgiya, 1993.


MINING AND SUBSOIL USE


HARD MINERAL MINING AND RAW MATERIAL SUPPLY IN RUSSIA: CURRENT STATE AND CHALLENGES
V. N. Oparin, A. M. Freidin, A. P. Tapsiev, and P. A. Filippov

The article focuses on the current situation and challenges of the mineral and raw materials supply in Russian Federation.

Hard minerals, technological support, mining sciences, registered economic resource base, use per capita, ecological issues

EFERENCES
1. Belova, A.G. and Kornilkov, S.V., Technology-Based Platform for Hard Minerals, Gorny Zh., 2012, no. 1.
2. Mineralnye resyrsy mira na 01.01 2010 goda. Konyuktura mirovykh rynkov mineralnogo syriya (World Mineral Reserves as of January 1, 2010. Mineral Raw Materials World Market Trends), Moscow: IATS MInaral FGUNP Aerologiya MPR RF, 2010.
3. Kozlovsky, E.N., Russia: Mineral Wealth and National Security, Vestn. MGGU, 2002.
4. Orlov, V.P., The State and the Subsoil Use, Minerl. Resursy Rossii. Ekonom. Upravl., 2001, no. 2.
5. Pitersky, V.M., Strategicheskii potential Rossii (Strategical Potential of Russia), Moscow: Geoinformmark, 1999.
6. Ivanov, O.P., Gosudarstvennoe upravlenie prirodnymi resursami (State Management of Natural Resources), Novosibirsk: Feder. Agentst. Nedropolz., 2007.
7. Oganesyan, L.V., How to Manage the Common Heritage of the Earth? Prirod.-Resurs. Vedom., 2001, no. 33.
8. Krivtsov, A.I. and Ligachev, N.F., Prospects of Global Mineral and Raw Material Supplies and Mineral Use Efficiency, Ruda Metally, 2001, no. 1.
9. Zabrodsky, A.G., Mikhailov, B.K., Nekrasov, A.I., and Stavsky, A.P., Geologorazvedochnaya aktivnotst rossiiskikh nedropolzovatelei (TPI) v usloviyakh ekonomicheskogo krizisa (Activity of Russian Subsoil Users in Geological Exploration of Hard Minerals under Economic Depression), available at: www.mineral.ru/ Analytics/rutrend/151/467/grr.pdf.
10. Trubetskoy, K.N., Kornilkov, S.V., and Yakovlev, V.L., new Approaches to Sustained Development in Mining Industry, Gorny Zh., 2012, no. 1.
11. Kaplunov, D.R., Razvitie proizvodstvennoi moshchnosti podzemnykh rudnikov pri tekhnicheskom perevooruzhenii (Developing Underground Mining Capacity under Technical Upgrading), Moscow: Nauka, 1999.
12. Yakovlev, V.L., Burykon, S.A., and Stakheev, N.L., Osnovy strategii mineralnykh resursov Urala (Basics for the Mineral Reserves Strategy in the Urals), Ekaterinburg: UrO RAN, 1999.
13. Oparin, V.N. and Kurlenya, M.V., O nelineinykh protsessakh v geomekhanike (Nonlinear Geomechanics), Moscow: IMASJ RAN, 1988.
14. Oparin, V.N., Tapsiev, A.P., Rozenbaum, M.A., et al., Zonalnaya dezintegratsiya gornykh porod i ustoichivost podzemnykh vyrabotok (Zonal Disintegration of Rocks and the Stability of Underground Openings), Novosibirsk: SO RAN, 2008.
15. Oparin, V.N., Rusin, E.P., Tapsiev, A.P., et al., Mirovoi opyt avtomatizatsii gornykh rabot na podzemnykh rudnikakh (Underground Mining Automation Experience in the World), Novosibirsk: SO RAN, 2007.
16. Golik, V.I., Komashchenko, V.I., and Monov, I.V., Gornoe delo i okruzhayushchaya sreda (Mining and the Natural Environment),
17. Oparin, V.N., Tapsiev, A.P., Konykh, V.L., and Freidin, A.M., Prospects of an Automated Mode Mining Complex, Gorny Zh., 2005, no. 12.
18. Oparin, V.N. and Ordin, A.A., Hubberts theory and the Ultimate Coal Production in Terms of the Kuznetsk Coal Basin, Journal of Mining Science, 2001, vol. 47, no. 2, pp. 254266.
19. Filippov, P.A., The Potential of Technogenic Formations in Mines of the West Siberia, Journal of Mining Science, 2008, vol. 44, no. 4, pp. 386390.
20. Sashurin, A.D., Mining Geomechanics. Fundamental and Applied Research, Gorny Zh., 2012, no. 1 


     ( )
Rambler's Top100   @Mail.ru

. .. 
: 630091, , , , 54
: +7 (383) 205–30–30, . 100 ()
: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© . ..  , 2004–2020.