Rambler's Top100
     « »               
 »  » «- … »  » 2013  » JMS, Vol. 49, No. 6, 2013

JMS, Vol. 49, No. 6, 2013


I. V. Miletenko, N. A. Miletenko, and V. N. Odintsev

The authors offer a new approach to modeling mining-induced dislocation in rock mass based on the calculation of nonuniform stress state of rocks, probabilistic assessment of rock mass strength and the laws of the theory of percolation filtration.

Rock mass, contact fracture, induced dislocation, underground excavations, stress state, theory of percolation filtration, permeability

1. Trubetskoy, K.N., Gornye nauki. Osvoenie i sokhranenie nedr Zemli (Mining Sciences. Exploitation and Conservation of the Earth Mineral Wealth), Moscow: Akad. Gor. Nauk, 1997.
2. Bolotin, V.V., Statisticheskie metody v stroitelnoi mekhanike (Statistical Methods in Structural Mechanics), Moscow: Lit. Stroit., 1965.
3. Rekomendatsii po opredeleniyu mekhanicheskikh svoistv treshchinovatogo massiva (Guidelines on Estimation of Jointy Rock Mass StressStrain Properties), Saint-Petersburg: VNIMI, 1992.
4. Raizer, V.D., Teoriya nadezhnosti v stroitelnom proektirovanii (Theory of Reliability in Structural Design), Moscow: Assots. Stroit. Vuzov, 1998.
5. Tarasevich, Yu.Yu., Perkolyatsiya: teoriya, prilozhaniya, algoritmy (Percolation Filtration: Theory, Applications, Algorithms), Moscow: Editorial URSS, 2002.
6. Chelidze, T.L., Metody teorii protekaniya v mekhanike geomaterialov (Theory of Leakage in Geomechanics), Moscow: Nauka, 1987.
7. Trubetskoy, K.N., Militenko, I.V., Militenko, N.A., and Odintsev, V.N., Analytical Estimation of Mining-Induced Dislocation in a Protective Pillar, Problemy otrabotki almazonosnogo mestorozhdeniya trubki Mir pod tolshchei metegero-icherskogo vodonosnogo komplekas (Problems of the Mir Diamond Mining under the Metegero-Ichersky Acquiferous Complex), Moscow: IPKON RAN, 2012.

L. A. Nazarov, L. A. Nazarova, A. L. Karchevsky, and N. A. Miroshnichenko

The article describes the procedure of estimating spatial distribution of pressure in a producing formation under mining by the land surface geodesy survey data. The numerical experiments show that one-valued resolvability of the inverse problem requires the land surface movement to be measured both in vertical and horizontal directions.

Rock mass, producing formation, pressure, inverse problem, geodesy data, movement, objective function

1. Kashnikov, Yu.A., Musikhin, V.V., and Lyskov, I.A., Radar Interferometry-Based Determination of Ground Surface Subsidence under Mineral Mining, Journal of Mining Science, 2012, vol. 48, no. 4, pp. 649655.
2. Doomhof, D., Kristiansen, T.G., Nagel, N.B., et al., Compaction and Subsidence, Schlumberger Oilfield Review, vol. 18, no. 3, 2006.
3. Fjaer, E., et al., Petroleum Related Rock Mechanics, Elsevier, 1992.
4. Nagel, N.B., Compaction and Subsidence Issues within the Petroleum Industry: From Wilmington to Ekofisk and Beyond, Phys. Chem. Earth A, 2001, vol. 26, nos. 1 and 2.
5. Grasso, J.R. and Feigner, B., Seismicity Induced by Gas Production: II. Lithology Correlated Events, Induced Stresses and Deformation, Pure and Applied Geophysics, 1990, vol. 134, issue 3.
6. Grasso, J.R. and Wittlingef, G., Ten Years of Seismic Monitoring over a Gas Field, Bulletin of the Seismological Society of America, 1990, vol. 80, no. 2.
7. Kovach, R., Source Mechanisms for Wilmington Oil field, California, subsidence earthquakes, Bulletin of the Seismological Society of America, 1974, vol. 64, no. 3.
8. Potapov, V.P., Oparin, V.N., Logov, A.B., et al., Regional Geomechanical-Geodynamic Control geoinformation System with Entropy Analysis of Seismic Events (in Terms of Kuzbass), Journal of Mining Science, 2013, vol. 49, no. 3, pp. 482488.
9. http://ria.ru/nsk/20130815/956485711.html.
10. Burgmann, R., Rosen, P.A., and Fielding, E.J., Synthetic Aperture Radar Interferometry to Measure Earths Surface Topography and Its Deformation, Annual Review of Earth and Planetary Sciences, 2000, no. 28.
11. Akcin, H., Degucci, T., and Kutoglu, H.S., Monitoring Mining Induced Subsidence Using GPS and InSAR, Proc. 23rd FIG Congress, Munich, Germany, 2006.
12. Krawczyk, A., Perski, Z., and Hanssen, R., Application of ASAR Interferometry for Motorway Deformation Monitoring, Proc. ENVISAT Symposium, Montreux, Switzerland, 2007.
13. Vasco, D.W., Ferretti, A., and Novali, F., Reservoir Monitoring and Characterization Using Satellite Geodetic Data: Interferometric Synthetic Aperture Radar Observations from the Krechba Field, Algeria, Lawrence Berkeley National Laboratory, 2008.
14. Carlo, J., Castelletto, N., Ferronato, M., et al., A Geomechanical Transversely Isotropic Model of the Po River Basin Using PSInSAR Derived Horizontal Displacement, International Journal of Rock Mechanics and Mining Sciences, 2012, vol. 51.
15. Henry, E., Mayer, C., and Rott, H., Mapping Mining-Induced Subsidence from Space in a Hard Rock Mine: Example of SAR Interferometry Application at Kiruna Mine, CIM Bulletin, 2004, vol. 97, no. 1083.
16. Biegert, E., Berry, J., and Oakley, S., Oil Field Subsidence Monitoring Using Spaceborne Interferometric SARA Belridge 4-D Case History, Proceedings Annual Meeting of the American Association of Petroleum Geologists, 1998, Dallas.
17. Fielding, E.J., Blom, R.G., and Goldstein, R.M., Rapid Subsidence over Oil Field Measured by SAR Interferometry, Geophysical Research Letters, 1998, vol. 25, no. 17.
18. Xu, H., Dvorkin, J., and Nur, A., Linking Oil Production to Surface Subsidence from Satellite Radar Interferometry, Geophysical Research Letters, 2001, vol. 28, no. 7.
19. Geertsma, J., Land Subsidence above Compacting Oil and Gas Reservoirs, Journal of Petroleum Technology, 1973, vol. 25.
20. Piau, J.-M., Compaction and Subsidence of Petroleum Reservoirs, Mechanics of Porous Media, P. Charlez (Ed.), Balkema, 1994.
21. Aziz, K. and Settari, A., Petroleum Reservoir Simulation, Applied Science Publishers Ltd., 1979.
22. Detournay, E., Cheng, A.H-D., Fundamentals of Poroelasticity, Comprehensive Rock EngineeringPrinciples, Practice and Projects, vol. 2, Analysis and Design Methods, J. A. Hudson (Ed.), Pergamon Press, 1993.
23. Donaldson, E.C., Simulation of Compaction due to Fluid Withdrawal, Subsidence due to Fluid Withdrawa, G. V. Chilingarian and E. C. Donaldson (Eds.), Elsevier Science, 1995.
24. Biot, M.A., General Theory of Three-Dimensional Consolidation, Journal of Applied Physics, 1941, vol. 12.
25. Coussy, O., Poromechanics, John Wiley & Son Ltd, 2004.
26. Chan, T., Khair, K., Jing, L., et al., International Comparison of Coupled Thermo-Hydro-Mechanical Models of a Multiple-Fracture Bench Mark Problem: DECOVALEX Phase I, Bench Mark Test 2, Int. J. of Rock Mech. and Min. Sci. & Geomech. Abstr., vol. 32, 1995.
27. Woo, K.S., Eberhardt, E., Rabus, B., et al., Integration of Field Characterization, Mine Production and InSAR Monitoring Data to Constrain and Calibrate 3-D Numerical Modelling of Block Caving-Induced Subsidence, International Journal of Rock Mechanics and Mining Sciences, 2012, vol. 53.
28. Qi, Li, PS-Insar Monitoring and Finite Element Simulation of Geomechanical and Hydrogeological Responses in Sedimentary Formations, Proc. Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, Conference Publications, 2011.
29. Nowacki, W., Theory of Micropolar Elasticity, Springer, 1972.
30. Samarsky, A.A., Vvedenie v teoriyu raznostnykh skhem (The Introduction in the Theory of Difference Schemes), Moscow: Nauka, 1971.
31. Nazarova, L.A., Stress State of a Sloping-Bedded Rock Mass around a Working, Journal of Mining Science, 1985, vol. 21, no. 2, pp. 132135.
32. www.chiefscientist.nsw.gov.au (Background Paper on Subsidence Monitoring and Measurement with a Focus on Coal Seam Gas Activities).
33. http://www.laserlocation.ru.
34. Muskat, M., The Flow of Homogeneous Fluids through Porous Media, McGraw-Hill Book Company, Inc. 1937.
35. Romanov, V.G., Obratnye zadachi matematichskoi fiziki (Inverse Problems for Mathematical Physics), Moscow: Nedra, 1984.
36. Nazarova, L.A., Mazarov, L.A., and Miroshnichenko,N.A., Determining Deformation and Strength of a Filling Mass during Stoping by the Inverse Problem Solving, Journal of Mining Science, 2012, vol. 48, no. 4, pp. 616621. 012. № 4.
37. Nazarov, L.A., Nazarova, LA., Karchevsky, A.L. and Panov, A. V. Inverse Problem on Rock Mass Stresses and Strains by Measurements of Free Boundary Displacements, Sib. Zh. Industr. Matem., 2012, vol. 14, no. 4.
38. Nazarov, L.A. and Nazarova, L.A., Characterization of a Nucleating Earthquake Source by the Data on Daylight Surface Displacements, Dokl. RAN, 2009, vol. 427, no. 4.
39. Vasilev, F.P., Chislennye metody resheniya ekstremalnykh zadach (Numerical methods of the Extreme Problem Solution), Moscow: Nauka, 1988.
40. Karchevsky, A.L., Numerical Solution of One-Dimensional Problem for an Elastic System, Dokl. RAN, 2000, vol. 375, no. 2.

D. V. Yakovlev, T. I. Lazarevich, and S. V. Tsirel

Based on the plotted times of occurrence of seismic events, their timing within a work week and location of epicenters, it is illustrated that since the 1960s the seismicity in the Kuzbass territory has been a complicated natural and mining-induced phenomenon. Since the late 1980s, the natural and mining-induced seismicity has entered the second evolution stage, with clustering of low-energy seismic events and strong shallow earthquakes in the areas under heavy mining and, in the first instance, at deep open pit mines. The representative event of this kind is the magnitude 5.2 earthquake at the Bachatsky Open Pit Coal Mine on June 19, 2013. It has been found that the natural and induced seismic activity is associated with deep faults that weakly show themselves in the upper layer of the earth crust and appear in the local relief, which is an evidence of their live emergence onto the daylight surface due to the mining impact. The article proposes the comprehensive research program for the natural and mining-induced seismic activity in the Kuzbass area and the development of early identification of seismically active zones.

Seismic events, earthquakes, open pit mines, mining operations, curves of time of occurrence, deep faults, seismic station network, P-waves and S-waves, geodynamic monitoring

1. Gupta, H.K. and Rastogi, B.K., The Dams and Earthquakes, Elsevier, 1976.
2. Sheidegger, A., Osnovy geodinamiki (Fundamentals of Geodynamics), Moscow: Nedra, 1987.
3. Nikolaev, A.V., Induced Seismicity Problems, Navedennaya Seismichnost (Induced Seismicity), Moscow: Nauka, 1994.
4. Nikolaev, A. and Console, R. (Eds.), Earthquakes Induced by Underground Nuclear Explosions: Environmental and Ecological Problems, NATO ASI Series, Springer, 1995.
5. Adushkin, V.V. and Turuntave, S.B., Tekhnogennye prpotsessy v zemnoi kore (opasnosti katastrofy) (Induced Crustal Processes (Earthquake Hazard)), Moscow: INEK, 2005.
6. Adushkin, V.V., Induced Seismicity: Main Sources, Causes and Their Classification, Gornaya geomekhanika i marksheideriya v tysyacheletii (Rock Mechanics and Surveying of the Millennium), Saint-Petersburg: VNIMI, 2004.
7. Melnikov, N.N. (Ed.), Siesmichnost pri gornykh rabortakh (Seismicity in Mining), Apatity: KNTs RAN, 2002.
8. Pernatsky, S.I. and Shershnevich, V.A., The Strongest Induced Earthquake in Umbozero Mine: Mine-Technical Aspects, Gorny Zh., 2002, no. 1.
9. Syrnikov, N.M. and Tryapitsyn, V.M., The Khibiny Induced Earthquake Mechanism, Dokl. AN SSSR, 1990, vol. 134, no. 4.
10. Bryskin, A.A. and Seleznev, V.S., Impact of Mining on the Seismicity in Kuzbass and at the Lake Baikal, Geolog. Geofiz., 2012, vol. 53, no. 3.
11. Emanov, A.F., Emanov, A.A., Leskova, E.V., et al., Seismicity Activation under Cola Extraction in Kuzbass, Fiz. Mezomekh., 2009, no. 1.
12. Klimanova, V.G. and Batugin, A.S., Induced Seismicity Impact on the Environment and Technosphere, Ned. Gornyak., 2003, no. 7.
13. Holub, K., A Study of Mining-Induced Seismicity in Czech Mines with Longwall Coal Exploitation, Journal of Mining Science, 2007, vol. 43, no. 1, pp. 3239.
14. Kondratev, O.K. anLyukew, E.I., Induced Seismicity. Reality and Myths, Fiz. Zemli, 2007, no. 9.
15. Oparin, V.N., Emanov, A.F., Vostrikov, V.I., and Tsibizov, L.V., Kinetics of Seismic Emission in Coal Mines in Kuzbass, Journal of Mining Science, 2013, vol. 49, no. 4, pp. 521536.
16. Construction Norms and regulations 14.13330.2011. Construction in Seismic Areas, Moscow: Gosstroi Rossii, 2011.
17. Lutikov, A.I., Dontsova, G.Yu., and Ynga, S.L., Seismology Aspects of Gorny Altai Earthquake on Sep 27, 2003, s = 7.3 (Preliminary Analysis Results), Vestn. Otd. Nauk Zemle RAN: Elektron. Nauch.-Inform. Zh., 2003, no. 1 (21).
18. Yakovlev, D.V. and Lazarevich, T.I., Induced Seismicity in Kuzbass, Gornaya geomekhanika i marksheiderskoe delo (Geomechanics and Surveying), Saint-Petersburg: VNIMI, 2009.
19. Lazarevich, T.I. and Polyakov, A.N., Monitoring of Mine Seismic and Geodynamic Safety in Kuzbass, Gornaya geomekhanika i marksheiderskoe delo (Geomechanics and Surveying), Saint-Petersburg: VNIMI, 2009.
20. Ekimov, A.I. and Tsirel, S.V., Features of Tectonic and Seismic Activity in Kuzbass, Zapiski Gorn. Inst., 2010, vol. 188.
21. Tsirel, S.V. and Belyaeva, L.I., Shape and Slope of the Recurrence Rate Curves of Seismic Events as the Characteristic of Hazard Level and the Natural/Induced Seismicity Ratio, Gorn. Inform.-Analit. Byull., 2009, no. 11.
22 . Emanov, A.F., Emanov, A.A., Leskova, E.V., et al., Induced Seismicity in Polysaevo District (Kuzbass), Zemletryaseniya v Rossii v 2008 godu (Earthquakes in Russia in 2008), Obninks: GS RAN, 2010.
23. Yavorsky, V.I. (Ed.), Geologicheskaya karta Kuznetskogo baseina i ego gronykh obramlenii / masshtab 1:500000 (Geological Map of the Kuznetsky Basin and the Mountainous Surround / Scale 1: 50000), Leningard: VSEGEI, 1961.
24. Geologo-promyshlennaya karta Kuznetskogo basseina / masshtab 1:100000 (Map of geology and Industry of the Kuznetsk basin / Scal1 1:100000), Novosibirsk: SNIIGGiMS, 2000.
25. Emanov, A.F., Emanov, A.A., Leskova, E.V., et al., Seismic Monitoring in Osinniki District (Kemerovo Region), Zemletryaseniya v Rossii v 2008 godu (Earthquakes in Russia in 2008), Obninks: GS RAN, 2007.

A. P. Bobryakov

The laboratory modeling of unsteady deformation at interface of a faulting zone, aimed at studying motions over rigid surfaces with an in-between interlayer of pre-stressed granular medium now exposed to trigger destressing, has shown that relationship of the force drop and displacement of rigid boundaries under the trigger destressing is linear. The slope of straight lines characterizes the resultant rigidity of the system and depends on the set of the input parameters: the spring simulating elasticity of fault surfaces; the granular medium simulating the faulting contact friction; the short-term friction drop trigger. It is found that soft loading takes much energy and results in lower force drop but higher displacements under destressing. The author illustrates that the destressing of the granular medium pre-set in the limit state is accompanied with displacement discontinuities at the rigid boundaries and partial drop of the shearing force.

Shear, trigger effects, soft loading, faults, friction, slipping

1. Bobryakov, A.P. and Lubyagin, A.V., Experimental Investigation into Unstable Slippage, Journal of Mining Science, 2008, vol. 44, no. 44, pp. 336344.
2. Kozykh, V.P., Displacement Discontinuity Distribution in Granular Materials under Confined-Space Shearing, Journal of Mining Science, 2010, vol. 46, no. 3, pp. 234240.
3. Adushkin, V.V. and Kocharyan, G.G. (Eds.), Triggernye effekty ve geosistemakh: Materialy Vseross. seminara (Trigger Effects in Geosystems: All-Russian Workshop Proceedings, Moscow: Geos, 2010.
4. Molchanov, A.E., Trigger Impact Mechanics in Artificially Induced Earthquake, Triggernye effekty ve geosistemakh: Materialy Vseross. seminara (Trigger Effects in Geosystems: All-Russian Workshop Proceedings, Moscow: Geos, 2010.
5. Gerasimova, T.I., Kondratev, V.N., and Kocharyan, G.G., Modeling features of shear deformation of fissures containing filler, Journal of Mining Science, 1995, vol. 31, no. 4, pp. 288295.
6. Johnson, P., Savage, H., Knuth, M., Gomberg, J., and Marone, C. ,Effects of Acoustic Waves on StickSlip in Granular Media and Implications for Earthquakes, Nature, 2008, vol. 451.
7. Bobryakov, A.P., Modeling Simulation of Deformation in a Blocky Geomedium during Origination of Earthquake, Journal of Mining Science, 2011, vol. 47, no. 6, pp. 722729.
8. obryakov, A.P. abd Revuzhenko, A.F., Uniform Displacement of a Granular Material. Dilatancy, Journal of Mining Science, 1985, vol. 18, no. 5, pp. 373379.
9. Bobryakov, A.P., Influence of Weak Shakes on a Statically Stressed Granular Medium, Journal of Mining Science, 2008, vol. 44, no. 2, pp. 115122.
10. Kocharyan, G.G., Benedik, A.A., Kostyuchenko, V.N., Kulyukin, A.M., and Pavlov, D.V., Geomechanical Modeling of Geophysical Objects, Fizicheskie protsessy v geosferakh pri silnykh vozmushcheniyakh (Physical Processes in Geospheres under Heavy Perturbation), Moscow: IDG RAN, 1996.
11. Esaki, E., Du, S., Metani, Y., Ikusada, K., and Jing, Li, Development of a Shear Flow Test Apparatus and Determination of Coupled Properties for a Single Rock Joint, Int. J. Rock Mech, Min. Sci., 1999, vol. 36.
12. Kurlenya, V.M., Oparin, V.N., and Vostrikov, V.I., Anomalously Low Friction in Block Media, Journal of Mining Science, 111.
13. Ponomarev, S.D., Biderman, V.A., et al., Osnovy sovremennykh metodov rascheta na prochnost v mashinostroenii (Baselines of the Current Strength Calculation Techniques in Engineering), Moscow: Mashgiz, 1952.
14. Barenblatt, G.I., Great Mechanician Sergey Alekseevich Khristianovich, Sergey Alekseevich Khristianovich: Vydayushchiysya mekhanik XX veka (Sergey Alekseevich Khristianovich: Distinguished Figure in the 20th Century Mechanics), Novosibirsk: Geo, 2008.

S. V. Klishin and O. A. Mikenina

The authors study numerically the stressstrain state of a discrete material under biaxial loading in the three-dimensional case. It is shown that the DruckerPrager continuum relation is valid for the two-dimensional case at the early yielding stage.

Stress state, horizontal stress, continuum model, rock, continuum, granular material, numerical analysis, discrete element method

1. Bulychev, N.S., Mekhanika podzemnykh sooruzhenii (Underground Structure Mechanics), Moscow: Nedra, 1994.
2. Turchaninov, I.A., Iofis, M.A., and Kasparyan, E.V., Osnovy mekhaniki gornykh porod (Fundamenals of Rock Mechanics), Leningrad: Nedra, 1989.
3. Klein, G.K., Raschet podpornykh sten (Calculation of Battering Walls), Moscow: Vyssh. shkola, 1969.
4. Revuzhenko, A.F. and Klishin, S.V., Numerical Method for the Continuum Modeling of a Solid Deformation Equivalent to the Assigned Discrete Element Model, Fiz. Mezomekh., 2012, vol. 15, no. 6.
5. Sokolovsky, V. V. Teoriya plastichnosti (Plasticity theory), Moscow: Mir, 1969.
6. Nadai, A.L., Theory of Flow and Fracture of Solids, McGraw Hill, 1950.
7. Rabotnov, Yu.N., Mekhanika deformiruemogo tverdogo tela (Mechanics of Deformation of Solids), Moscow: Nauka, 1988.
8. Revuzhenko, A.F., Mekhanika uprugoplasticheskikh sred i nestandartnyi analiz (Mechanics of Elastiplastic Media and the Nonstandard Analysis), Novosibirsk: NGU, 2000.

S. V. Slastunov, G. G. Karkashadze, K. S. Kolikov, and G. P. Ermak

The offered calculation procedure for the permissible output of a production face by gas factor is based on the equation of methane emission in the production face area from coal and roof and floor rocks. The model includes permeability and absorption of coal, porosity and thickness of coal seam, production face length, methane pressure and the operational safety-permitted methane concentration in the return ventilation air. The model implementation will help in validation of scheduled output of production faces in coal mines.

Coal, methane, methane content, pressure, absorption, mass transfer, permissible face output

1. Instruktsiya po raschety kolichestva vozdukha, neobkhodimogo dlya provetrivaniya deistvuyushchikh ugolnykh shakht (Guidelines on Calculation of the Required Air Flow for Operating Coal Mine Ventlation), Moscow: Nedra, 1994.
2. Rukovodstvo po proetirovaniyu ventilyatsii ugolnykh shakht (Coal Mine Ventilation Design Manual), Makeevka, Donbass: MakNII, 1989.
3. Trobetskoy, K.N., Ruban, A.D., and Zaburdyaev, V.S., Characteristic of Methane Release in Highly productive Coal Mines, Journal of Mining Science, 2011, vol. 47, no. 4, pp. 467475.
4. Polubarinova-Kochina, P.Ya., Unstable Gas Filtration in Coal, Prikl, Mat. Mekh., 1953, vol. 17, no. 6.
5. Karkashadze, G.G., Ivanov, Yu.M., and Ermak, G.P., Evaluation of Methane Concentration in Mined-Out Void by Ventilation Air Flow Parameters Picked-Up along the Longwall, Gorny Infrom.-Analit. Byull., 2012, no. 4.

A. F. Bulat, S. P. Mineev, A. M. Bryukhanov, and A. V. Nikiforov

The authors review the published material on gas-dynamic events in coal mines. The existing classifications of gas-dynamic events are analyzed and generalized, and principles of a classification procedure for gas-dynamic events are considered. The article presents the advisable classification to be used in Donbass coal mines to investigate accidents and the related events.

Gas-dynamic events, mining operations, coal mine, classification, event conditions, warning signs, characteristic

1. Petrosyan, A.E. and Ivanov, B.M., Sources and Causes of Coal and Gas Outbursts, Osnovy teorii vnezapnykh vybrosov uglya, porody i gaza (Fundamentals of the Theory on Coal, Rock and Gas Outbursts), Moscow: Nedra, 1978.
2. Lidin, G.D., Experience of Classifying Unusual Gas Releases in Operating Coal Seam, Tudy IGD, 19551956, vols. IIII.
3. Chernov, O.I. and Rozantsev, E.S., Podgotovka shakhtnykh polei s gazovybrosoopasnymy plastami (Preparation of Minefields with Gas Outburst-Hazardous Seams), Moscow: Nedra, 1975.
4. Chernyaev, V.I., Zborshchik, M.P., and Grishchenkov, N.N., Planirovka gornykh rabot pri otrabotke svit vybrosoopasnykh porod (Mine Planning in Outburst-Hazardous Formations), Donetsk: DonGTU, 1998.
5. Petukhovm, I.M., Voprosy teorii vybrosov uglya (porody) i gaza (Issues of the Theory of Coal (Rock) and Gas Outbursts), Leningrad: VNIMI, 1975.
6. Petukhov, I.M. and Linkov, A.M., Mekhanika gornykh udarov i vyrosov (Mechanics of Rockbursts and Outbursts), Moscow: Nedra, 1983.
7. Instruktsiya po bezopasnomy vedeniyu gronykh rabot na plastakh, opasnykh po vnezapnym vybrosam uglya, porody i gaza (Guidelines on Safe Mining in Coal, Rock and Gas Outburst-Hazardous Seams), Moscow: Minugleprom SSSR, 1989.
8. Morev, A.M., Sklyarov, L.A., Bolshinsky, I.M., et al., Vnezapnye razrusheniya pochvy i proryvy metana v vyrabotki ugolnykh shakht (Sudden Fracture of Drive Floor and Methane Breakthrough in Mine Excavations), Moscow: Nedra, 1992.
9. Vremennaya instruktsiya po bezopasnomu vedeniyu gornykh rabot na plastakh, opasnykh po vnezapnym obrusheniyam (vysypaniyam) uglya (Donetskii bassein) (Temporal Guidelines on Safe Mining in Sudden Coal Cave-In (Eruption) Hazardous Seams in Donetsk Basin), Makeevka: MakNII, 1991.
10. Mineev, S.P., Rubinsky, A.A., Vitusko, O.V., and Radchenko, A.G., Gornue raboty v slozhnykh usloviyakh na vybrosoopasnykh ugolnukh plastakh (Mining in Complicated Conditions of Outburst-Hazardous Coal Seams), Donetsk: Skhid. vidavn. dim, 2001.
11. Bulat, A.F., Lukinov, V.V., Pimonenko, L.I., et al., Geologicheskie osnovy i metody prognoza vubrosoopasnosti uglya, porod i gaza (Geological Basis and Methods of Forecasting of Coal, Rock and Gas Outburst Hazard), Dnepropetrovsk: Monolit, 2001.
12. Lazarvich, T.I., Geodynamic Events in Kuzbass and Their Classification by the Released Energy Amount, Sovremennye problem bezopasnoi razrabotki ugolnykh mestorozhdenii: koordinats. soveshch. Sb. dokl. (Current of Safe Coal Mining: Coordination Meeting. Collected Works), Saint-Petersburg: VNIMI, 2006.
13. Shemyakin, E.I., Kurlenya, M.V., and Kulakov, G.I., Classification of Rock Bursts, Journal of Mining Science, 1986, vol. 22, no. 5, pp. 329336.
14. Kiselev, V.G., Geodynamic Events, Classifications and Prevention, Ugol, 2009. No. 9.
15. Oparin, V.N., Ludzish, V.S., Kulakov, G.I., and Rudakov, V.A., Peculiarities of Distribution of Gas-Dynamic Manifestations in Mines of the Kuznetsk Coal Basin by Days of Weekly Cycle, Journal of Mining Science, 2005, vol. 41, no. 2, pp. 93104.
16. Zykov, V.S., Situation and Problems in Combating Gas-Dynamic Events in Kuzbass Mines, Sovremennye problem bezopasnoi razrabotki ugolnykh mestorozhdenii: koordinats. soveshch. Sb. dokl. (Current of Safe Coal Mining: Coordination Meeting. Collected Works), Saint-Petersburg: VNIMI, 2006.
17. Metodisheskie ukazaniya po klassifikatsii gazodinamichskikh yavlenii na ugolnykh shakhtrakh (Instructional Guidelines of Classification of Gas-Dynamic Events in Coal Mines), Moscow: TSBNTI MUP SSSR, 1991.
18. Mineev, S.P., Rubinsky, A.A., and Prusova, A.A., Gas-Dynamic Events in Mines, Geotechnical Mechanics (In Ukrainian, 2002, issue 41.
19. Mineev, S.P., Bryukhanov, A.M., Rubinsky, A.A., Ilyashov, M.A., and Markin, V.A., Classification Methodology for Gas-Dynamic Events, Nauk. Visnik NGA Ukaini, 2003, issue 10.
20. Pravila vedeniya gornykh rabot na plastakh, sklonnykh k gazodinamichskim sobytiaym: SOU 10.1.00174088.0112005 (Mining Rules for Gas-Dynamic Events-Hazardous Seams: SOU 10.1.00174088.0112005), Kiev: Miugleprom Ukrainy, 2005.

I. A. Sanfriov, Yu. I. Stepanov, K. B. Fatkin, I. Yu. Gerasimova, and A. I. Nikiforova

The mining safety circuit based on geophysical research is described in the article in terms of the Upper Kama Potash Deposit, with exemplification of different stages of the geophysical survey design. The authors discuss options of integrated interpretation of seismic and electric exploration data aiming to locate and monitor hazardous natural and mining-induced processes in potassium-enclosing strata.

Elastic waves, electrical resistance, dissolving, replacement, dilution, monitoring

1. Gendzwill, D.J. and Stead, D. Rock mass characterization around Saskatchevan potash mine opening using geophysical techniques: a review, Canadian Geotechnical Journal, 1992, vol. 29, no. 4.
2. Novoselitsky, V.M., Sanfirov, I.., Shcherbinina, G.P., and Yuzvak, V.P., Mining Safety of Upper Kama Potash Salt Deposit Based on Geological Research, Izv. Vuzov, Gorny Zh., 1995, no. 6.
3. Ukazaniya po zashchite rudnikov ot zatopleniya i okhrane podrabatyvaemykh obektov v usloviyakh VKMKS (Instructions on Mine Protection from Flooding and Undermined Objects Safety in terms of UKPSD), Saint Petersburg, 2004.
4. Baryakh, A.A., Sanfirov, I.A., Eremina, N.A., et al., On the Effect of Reef Formations on the Structure of Sedimentary Cover Upper Levels, Dokl. Akad. Nauk, 1998, vol. 363, no. 3.
5. Sanfirov, I.A., Rudnichnye zadachi seismorazvedki MOGT (CDP Seismic Objectives in Mine), Ekaterinburg: UrO RAN, 1996.
6. Sanfirov, I.A. and Prigara, A.M., Use of Seismic Record Dynamic Characteristics for Specification of Rock Mass Strength Properties, Gornoe Ekho, 2002, no. 3(9).
7. Nikiforova, A.I., The Evaluation of Spatial Laws of Wave Field Trouble Distribution for SaltBearing Section Interval within the Reef Mass, Strategiya i protsessy osvoeniya georesursov: sb. nauch. tr. (Strategy and Processes of Georesources Exploration: Collection of Scientific Papers), Perm: GI UrO RAN, 2011.
8. Rutherford, S.R. and Williams, R.H., Amplitude-Versus-Offset Variations in Gas Sands, Geophysics, 1989, vol. 54, no. 6.
9. Gerasimova, I.Yu., Sanfirov, I.A., Fatkin, K.B., and Belkin, V.V., Seismic Research of the Flooded Salt Mine, Proc. of 4th Saint Petersburg Int. Conf. & Ex., Saint Petersburg, 2010.

V. V. Dyrdin, V. G. Smirnov, and S. A. Shepeleva

The authors analyze phase equilibrium of gaseous methane and crystalline hydrate particles in coal pores, considering absorbed heat during phase transition. It is shown that the crystallohydrategaseous methane phase equilibrium in small pores can be nonsteady; i.e., on deviation from the phase equilibrium curve, the methane condition parameters change and, as a consequence, increase the deviation. Instantaneous dissociation of crystallohydrates induces rise of methane pressure, which intensifies outburst hazard and affects the outburst gas balance.

Underground mining, coal seams, gas-dynamic events, gas release, dissociation, phase transitions, gas hydrates

1. Makogon, Yu.F and Sarkisyants, G.A., Preduprezhdenie obrazovaniya gidratov pri dobyche i transportirovke gaza (Preventing Hydrate Generation in Gas Recovery and Transfer), Moscow: Nedra, 1966.
2. Shepeleva, S.A. and Dyrdin, V.V., Gas Emission under Coal and Gas Outbursts, Journal of Mining Science, 2011, vol. 47, no. 5, pp. 660663.
3. Kikoin, I.K. (Ed.), Tablitsy fizicheskikh velichin: spravochnik (Tables of Physical Values: Reference Guide), Moscow: Atomizdat, 1976.
4. Khristianovich, S.A., Fragmentation Wave, Izv. AN SSSR, Otd. Tekh. Nauk, 1953, no. 12.
5. Shepeleva, S.A. and Dyrdin, V.V., Potential Participation of Methane Crystallohydrates in Coal and Gas Outbursting, Vest. Nauch. Tsentra Bezop. Rabot Ugol. Prom., 2010, no. 1.
6. Khodot, V.V., Vnezapnye vybrosy uglya i gaza (Coal and Gas Outbursts), Moscow: Gosgortekhizdat, 1961.
7. Alekseev, A.D., Metan ugolnykh plastov. Formy nakhozhdeniya i problem izvlecheniya (Coal Methane. Forms of Occurrence and Problems of Recovery), Dnepro[etrovsk: IGTM NANU, 2010.

S. V. Usanov, V. V. Melnik, and A. L. Zamyatin

The article reports the underground mining-induced movement monitoring using a combination of geodesy survey and geophysical exploration methods in Vysokogorsky Iron Ore Mine where a geodynamic movement has occurred. The geodesy survey methods are the conventional observation of the daylight surface deformation and the spectral seismic profiling of changes in the undermined rock mass structure. The monitoring objective was to find spatial parameters of disintegrated rock zone, make recommendations on continuing mining operations in the displacement trough zone where protected objects are situated, and identify causes of the enclosing rock instability.

Rock strata movement, earth surface damage, geodynamic events, monitoring, deformations, geophysical methods, rock mass structure

1. Usanov, S.V., Building Development Safety Estimation Procedure for Ground Surface above Underground Mine Excavations, Gorn. Inform-Analit. Byull., 2011, Special issue no. 11.
2. Usanov, S.V., Konovalova, Yu.P., and Zheltysheva, O.D., Advanced Monitoring Technologies for Movement Processes, Gorny Zh., 2012, no. 1.
3. Usanov, S.V., Geodynamic Movement of Rock Mass and Large Mine Impact, Gorn. Inform-Analit. Byull., 2011, no. 11.
4. Pravila okhrany sooruzhenii i prirodnykh obektov ot vrednogo vliyaniya podzemnykh vyrabotok na mestorozhdeniyakh rud chernykh metallov Urala i Kazakhstana (Regulations for Preservation of Buildings and Natural Bodies from Underground Ferrous Metal Ore Mining Impact in the Urals and Kazakhstan), Sverdlovsk: IGD Minmet SSSR, 1990.
5. Glikman, A.G., Fizika i praktika spektralnoi seismorazvedki (Physics and Practice of Spectral Profile Shooting). Available at: http://www.newgeophys.spb.ru/ru/book/index.shtmc.
6. Shemyakin, E.I., Kurlenya, M.V., Oparin, V.N., Reva, V.N., Glushikhin, F.P., and Rozenbaum, M.A., USSR Discovery no. 400. Byull. Izobret., 1992, no. 1.


I. P. Shcherbakov, V. S. Kuksenko, and A. E. Chmel

It has been not once noticed that origination and accumulation of fractures in rocks in the full scale and in laboratory specimens have much in common. The lab test data on rock specimen deformation and fracture are often used to interpret natural seismic events. Usually the laboratory tests are carried out at room temperature, whereas the temperature of rocks at the depth of origination of rock bursts and earthquakes can reach a few hundred degrees by Celsius. To assess the weight of this difference, the authors have obtained time series of acoustic emission impulses during origination of microcracks in granite specimens subjected to impact fracture at varied temperatures. The kinetics of damage accumulation and the cooperative effects differ greatly in the test temperature range from 20 to 600 .

Dynamic fracture, granite, acoustic emission, temperature dependence

1. Scholz, C.H., The Frequency-Magnitude Relation of Microfracturing in Rock and its Relation to Earthquakes, Bull. Seismic. Soc. Am., 1968, vol. 58, no. 1.
2. Zavyalov, A.D. and Sobolev, G.A., Analogy in Precursors of Dynamic Events at Different Scales, Tectonophys., 1988, vol. 152, nos. 34.
3. Smirnov, V.B., Ponomarev, A.V., and Zavyalov, A.D., The Structure of Acoustic Regime in Rocks Specimens and Seismic Process, Fizika Zemli, 1995, no. 1.
4. Amitrano, D., Variability in the Power-law Distributions of Rupture Events, Eur. Phys. J. Special Topics, 2012, vol. 205, no. 1.
5. Davidsen, J., Stanchits, S., and Dresen, G., Scaling and Universality in Rock Fracture, Phys. Rev. Lett., 2007, vol. 98.
6. Genshaft, Yu.S., The Earth is the OpenCycle System: Geological and Geophysical Consequences, Fizika Zemli, 2009, no. 8.
7. Lei, X. and Satoh, T., Indicators of Critical Point Behavior Prior to Rock Failure Inferred from Pre-failure Gamage, Tectonophys., 2007, vol. 431, nos. 14.
8. Kuksenko, V., Tomilin, N., and Chmel, A., The Rock Fracture Experiment with a Drive Control: A Spatial Aspect, Tectonophys., 2007, vol. 431.
9. Shcherbakov, I.P., Kuksenko, V.S., and Chmel, A.., Acoustic Emission Accumulation Stage in Compression and Impact Rupture of Granite, Journal of Mining Science, 2012, vol. 48, no. 4, pp. 656659.
10. Kuksenko, V.S., Diagnosis and Fracture of LargeScale Objects, Fizika Tverdogo Tela, 2005, vol. 47, no. 5.
11. Kusunose, K., Lei, X., Nishizawa, O., and Satoh, T., Effect of Grain Size on Fractal Structure of Acoustic Emission Hypocenter Distribution in Granitic Rock, Phys. Earth Plan. Interiors, 1991, vol. 67, nos. 12.


A. B. Begalinov, E. T. Serdaliev, E. E. Iskakov, and D. B. Amanzholov

The authors offer a new approach to the actual scientific and technical task of enhacing efficiency of heap leaching of rebellious oxidized and complex gold-containing ore. The optimization of the leaching technology can be reached through the application of regular shaking and shattering of ore stockpiles by low-density explosive charges.

Heap leaching, low-density explosives, foamed polystyrene, shaking, permeability, colmatage

1. Zharkenov, M.I. and Serdaliev, E.T., Authors Certificate no. 36313, Byull. Izobret., 2001, no. 0380.1.
2. Toktamysov, M.T., Zharkenov, M.I., and Satybaldin, O.B., Effektivnost vyshchelachivaniya otvalnykh i bednykh rud tsvetnykh i chernykh metallov Kazakhstana (Efficient Leaching of Dumped and Low-Grade Nonferrous and Ferrous Metal Ore in Kazakhstan), Alma-Ata, 1993.
3. Zharkenov, M.I. and Serdaliev, E.T., Low-Density Foamed Polystyrene-Based Explosives for Ore Stockpile Loosening during Heap Leaching, Vest. KazNU, 2003, no. 2.
4. Zharkenov, M.I., Urumov, T.T., Beketaev, E.B., and Ploshenko, T.P., Novaya tekhnologiya vzryvnykh rabot na karerakh na osnove primeneniya granulirovannogo penopolistirola v skvazhinnykh zaryadakh (New Open Pit Mine Blasting Technique Using Granular Foamed Polystyrene in Borehole Charges), Alma-Ata: KazNIINTI, 1987.

S. V. Klishin, V. I. Klishin, and G. Yu. Opruk

The physical and analytical modeling of coal discharge in thick coal mining by sublevel caving involves the method when coal is discharged under grvaity on the powered support units and is proportioned-fed to a face conveyor placed between the support units. Based on the physical modeling, the authors put forward a mathematical model to study the gravity flow of granular material in three dimensional formulation using discrete elements.

Underground coal mining, technology, discharge, powered support, gravity flow, physical model, laboratory experiment, numerical model, discrete element method

1. Tomashevsky, L.P., Levochko, V.P., Borovikov, P.A., Blinov, Yu.S., Kuzin, G.S., and Kalugin, O.F., Development and Basis of Sublevel Coal Extraction Technology and the Powered SupportRoadway Unit Parameters, Sovershenstvovanie tekhnologii razrabotki krutykh plastov Kuzbassa: Sb. nauch.tr. (Improvement of Steep Coal Extraction in Kuzbass: Collection of Scientific Papers), Prokopevsk: KuzNIUI, 1974.
2. Tomashevsky, L.P., Tekhnologiya razrabotki krutykh narushennykh plastov Kuzbassa i napravleniya ee sovershenstvovaniya: obzor TSNIEIugol (Steep Damaged Kuzbass Coal Extyraction Technology and Its Improvement Trends: Review of the Central Research Institute for Power Engineering and Coal Industry), Moscow, 1978.
3. Dmitriev, S.N., Zapreev, S.I., Senko, L.S., Krylov, V.F., and Tomashevsky, L.P., Osnovy tekhnologii razrabotki uglya s primeneniem gibkikh perekryrii (Basis of Coal Extraction Technology with Flexible Canopies), Moscow: Nedra, 1967.
4. Klishin, V.I., Kokoulin, D.I., Kubanychbek, B., and Klishin, S.V., RF patent no. 2399762, Byull. Izobret., 2010, no. 26.
5. Klishin V. I., Lekontsev, Yu.M., and Sazhin, P.V., RF patent no. 2394991, Byull. Izobret., 2010, no. 20.
6. Klishin, V.I., Fokin, Yu.S., Kokoulin, D.I., and Kubanychbek, B., Razrabotka moshchnykh plastov mekhanizirovannymi krepyami s reguliruemym vypuskom uglya (Thick Coal Mining with Powered Support with Adjustable Coal Discharge), Novosibirsk: Nauka, 2007.
7. Klishin, V.I., Vlasov, V.N., and Kubanychbek, B., Powered Support with Forced Top Coal Discharge, Gorn. Inform-Analit. Byull., 2003, no. 11.
8. Klishin, V.I., Fokin, Yu.S., and Kokoulin, D.I., Thick Methane Coal Extraction in the Concurrent Coal and Gas Mining, Int. Sci. Conf. Proc. Mining Science in the Republic of KazakhstanResume and Prospects, vol. 68, Almaty, 2004.
9. Klishin, V.I. and Opruk, G.Yu., Calculation of Gas Release in the Face in Sublevel Mining with the SupportRoadway Units, Vestn. KuzGTU, 2012, no. 6.
10. Stanislaw Gajos, Tadeusz Lamot, and Marek Urbas, Experience and Practical Aspects of Utilizing a Shrinkage Method of Extraction at KazimierzJuliusz Coal Mine in Sosnowiec, Proc. 5th Int. Mining Forum on New Technologies in Underground Mining, Safety in Mines, CracowSzczyrkWieliczka, Poland, 2004.
11. Dubynin, N.G., Mechanics of the Discharge of Granular Media, Sovershenstvovanie tekhnologii razrbotki rudnykh mestorozhdenii podzemnym sposobom: Sb. tr. IGD SO AN SSSR (Improvement of Underground Ore Mining Technologies: Transactions of the Institute of Mining, SB USSR AS), N. A. Chinakal (Ed.), Moscow: Nedra, 1965.
12. Stazhevsky, S.B., Features of Flow of Broken Rock in Extraction of Ore with Sublevel Caving, Journal of Mining Science, 1996, vol. 32, no. 5, pp. 403416.
13. Khan, G.N., Nonsymmetrical Failure of Rock Mass around a Void, Fiz. Mezomekh., 2008, vol. 11, no. 1.
14. Barykh, A.A., Rusin, E.P., Stazhevsky, S.B., Fedoseev, A.K., abd Khan, G.N., StressStrain State of Karst Areas, Journal of Mining Science, 2009, vol. 45, no. 6, pp. 517524.
15. Hirshfeld, D. AND Rapaport D. C., Granular Flow from a Silo: Discrete-Particle Simulations in Three Dimensions, The European Physical Journal E, 2001, vol. 4, issue 2.
16. Klishin, S.V. and Klishin, V.I., Coal Extraction from Thick Flat and Steep Beds, Journal of Mining Science, 2010, vol. 46, no. 2, pp. 149159.

A. A. Ordin, A. M. Nikolsky, and A. A. Metelkov

The problem on optimization of the prepration and stoping process variables based on the maximum discounted net revenue for the period of panel mining in a coal mine has been formualted and numerically solved. The optimized data are presented for the fully-mechanized production face in coal bed no. 19 in Kostromovskaya Mine. The authors also offer a new production face preparation scheme and illustrate its efficiency in terms of Kostromovskaya Mine.

Optimization, production face length, production face output, fully-mechanized production face, mine, panel, pillar, preparatory work mining and stoping

1. Shchadov, M.I. (Ed.), Tipovye skhemy vskrytiya, podgotovki i otrabotki ugolnykh plastov dlya shakht Rossisjoi Federatsii (Standard Opening-Up, Preparation and Extraction Schemes for Coal Mines in Russian Federation), Moscow: Fed. Agents. Energ., 2007.
2. Ruban, A.D., Zaburdyaev, V.S., and Kharchenko, A.V., Coal Bed Methane Drainage with Long Directional Boreholes, Journal of Mining Science, 2012, vol. 48, no. 3, pp. 436439.
3. Ordin, A.A. and Metelkov, A.A., Optimization of the Fully-Mechanized Stoping Face Length and Efficiency in a Coal Mine, Journal of Mining Science, 2013, vol. 49, no. 2, pp. 254264.
4. Ordin, A.A., Zyryanov, S.A., Nikolsky, A.M., et al., Basic Principles of Calculating the Fully-Mechanized Production Face Output by the Technology Factors in the Proza-3.0 Software System, Proc. Int. Theory and Practice Conf. High Technologies in Mineral Mining and Utilization, Novokuznetsk, 2012.
5. Ordin, A.A. and Klishin, V.I., Profitable Output of an All-Round Mechanized Stope, Journal of Mining Science, 1996, vol. 32, no. 6, pp. 553558.
6. Kodola, V.V. and Ordin, A.A., Technological Optimization of an Underground Work Area Design at the Operating Open Pit Mine Sibirginsky, Ugol, 2000, no. 8.
7. Ordin, A.A. and Klishin, V.I., Otimizatsiya tekhnologicheskikh parametrov gornodobyvayushchikh predpriyatii na osnove lagovykh modelei (Lag Modeling-Based Optimization of Process Variables for Mines), Novosibirsk: Nauka, 2009.
8. Lipkovich, S.M., Osnovy proetirovaniya ugolnykh shakht (Basis of Coal Mine Design), Moscow: Nedra, 1967.
9. Kurnosov, A.M., Rozentreter, B.A., Ustinov, M.I., et al., Nauchnye osnovy proektirovaniya ugol;nykh shakht dlya razrabotki pologikh plastov (Scientific Design Basis for Underground Gently-Dipping Coal Mining), Moscow: Nauka, 1964.
10. Livshits, V.N., Optimizatsiya pri perspektivnom planirovanii i proektirovanii (Optimization in Long-Term Planning and Designing), Moscow: Ekonomika, 1984.
11. Kosov, V.V., Livshits, V.N., Shakhnazarov, A.G., et al., Metodicheskie rekomenddatsii po otsenke effektivnosti investitsionnykh proektov (Policy Advice on Investment Project Efficiency), Moscow: Ekonomika, 2000.
12. Ordin, A.A., Lekontsev, Yu.M., Sazhin, P.V., et al., RF patent no. 2472939, Byull. Izobet., 2013, no. 2.

M. Hudej, S. Vujic, M. Radosavlevic, and S. Ilic

Selecting the location of the main mine shaft is a demanding multi-criteria task. The solution does not depend only on identification of the potential location for the construction and the criteria conditions set for the selection, but also on the applied procedure in the analysis. Since there is no general scientific agreement on the selection of the most suitable quantitative method for the support to decision making for this type of analyses, the problem is becoming even more complex. In terms of the Velenje Mine shaft location, the authors describe the approach that can be an exit from this situation. The idea of an approach is not the selection of the most suitable decision making support method but a multi-model procedure where several multi-criteria methods are being used simultaneously. In case when the techniques do not yield the same order of alternatives, it is advised to generate the final order using the method of ponderation.

Main mine shaft, location selection, multi-criteria analysis, Velenje Coal Mine

1. Hudej, M., Multivariable Models of Control in Mining, University of Belgrade, Faculty of Mining and Geology, Dr. Tech. Sci. Dissertation, 2013.
2. Bakhtavar, E., Shahriar, K., Oraee, K., Transition from Open-Pit to Underground as a New Optimization Challenge in Mining Engineering, Journal of Mining Science, Vol. 45, No. 5, 2009, pp. 485494.
3. Zambo, J., Optimum Location of Mining Facilities for Safety and Economy, Budapest: Akademia Kiado, 1968.
4. Strekachinsky, G.A., Teoriya i chislennye modeli vskrytiya mestorozhdenii (Theories and Numerical Models of Opening-Up a Deposit), Novosibirsk: Nauka, 1983.
5. Strekachinsky, G.A., Ordin, A.A., and Fedorin, V.A., Optimalnoe razmeshchenie transportnykh setei na poverkhnosti shakht (Optimized Deployment of the Surface Transport Network at Mines), Novosibirsk: Nauka, 1981.
6. Ordin, A.A., Numerical Analysis of the Minefield Opening-Up Techniques in Terms of the Usinskaya Mine-1 in the Pechora Coal Basin, PhD Eng. Dissertation, Novosibirsk: IGD SO AN SSSR, 1981.
7. Opricovic, S. and Gwo-Hshiung, T., Extended VIKOR Method in Comparison with Outranking Methods, European Journal of Operational Research, 2007, vol. 178, no. 2, pp. 514529.
8. Ozf?rat M. K. A Fuzzy Method for Selecting Underground Coal Mining Method Considering Mechanization Criteria, Journal of Mining Science, 2012, vol. 48, no. 3, pp. 533544.
9. Vujic, S., et al., A LocationAllocation Model of Mining Facilities Planning at Strategic Level, Proc.7th Int. Symp. Application of Mathematical Methods and Computers in Geology, Mining and Metallurgy, Sophia, Bulgaria, 1998, pp 5–12.
10. Vujic, S., A Comparative Multi-Criterion Analysis of Possible Technologies Used for Selective Mining, Conveyance and Dumping of Solum at Coal Open Pit Mines of the Electric Power Industry of Serbia, Annual of University of Mining and Geology St. Ivan Rilski, Part II: Mining and Mineral Processing, vol. 47, Sofia, Bulgaria, 2004, pp 197–200.
11. Vujic, S., Miljanovic, I., et al., Multiattributive Prediction of Terrain Stability above Underground Mining Operations, Yugoslav Journal of Operations Research, 2011, vol. 21, no. 2, pp. 275–291.
12. Vujoshevic, M., Optimization Methods in Management Engineering, Belgrade: Serbian Academy of Ingenerin Sciences & Faculty of Organizational Sciences University in Belgrade, 2012, p. 161.


V. N. Oparin, V. P. Potapov, O. L. Giniyatullina, and E. L. Shchastlivtsev

The authors discuss the practice of assessment of mine waste dump surface condition by the remote sensing data. The biomass is defined based on the soil-adjusted vegetation index SAVI. The article presents details of determining zones of soil generation and filling up by vegetation in terms of the operating mine waste dump in Kuzbass.

Mine waste dumps, remote sensing, vegetation indexes, self-filling up by vegetation, land reclamation

1. Malakhov, S.., Chrezvychainaya ekologicheskaya situatsiya v Kuzbassevozmozhnye puti resheniya (Environmental Emergency in KuzbassPossible Ways of Solution), Kemerovo: Kuzbassvuzizdat, 1999.
2. Potapov, V.P., Mazikin, V.P., Schastlivtsev, .L., and Vashlaev, N.Yu., Geoekologiya ugledobyvayushchikh raionov Kuzbassa (Geoecology of Coal Mining Areas in Kuzbass), Novosibirsk: Nauka, 2005.
3. Androkhanov, V.., Practical Solution of Disturbed Land Reclamation Problem on the Basis of Innovation Process, Gorn. Inform.-Analit. Byull., 2009, special issue OV 7.
4. De Jong, S.M. and van der Meer, F.D., Remote Sensing Image Analysis Including. The Spatial Domain, N. Y., Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers, 2004.
5. RF Federal Law on Environmental Protection of 10.01.2002, no. 7-FZ.
6. RF Law on Mineral Wealth of 21.02.1992, no. 2395–1.
7. Decree no. 1911-R of 12.10.2012, Alteration into Decree no. 671-r of 6.05.2008.
8. Oparin, V.N. (Ed.), Puti povysheniya effektivnosti i ekologicheskoi bezopasnosti otkrytoi dobychi tverdykh poleznykh iskopaemykh (Methods of Enhancement of Effectiveness and Ecological Safety of Solid Mineral Open Mining), Novosibirsk: S RAN, 2010.
9. Manakov, Yu.., Vascular Plants on Waste Dumps of Kedrovsky Coal Open-Pit Mine, Botan. Issled. Sib. Kazakhst., 1997, no. 3.
10. Manakov, Yu.. and Kupriyanov, .N., Diagnostic Criteria of Initial Stages of Succession on Kuzbass Waste Dumps, Gorn.Inform.-Analit. Byull., 2009, special issue V 7.
11. Trofimov, S.S., Teplyakova, .., and Klevenskaya, I.L., System Approach to Study of Soil Formation Processes in Technogenic Landscapes, Pochvoobrazovanie v tekhnogennykh landshaftakh (Soil Formation in Techno-Geneous Landscapes), Novosibirsk: Nauka, 1979.
12. Androkhanov, V.., Practical Solutions of Disturbed Land Reclamation Problem on the Basis of Innovation Process, Gorn.Inform.-Analit. Byull., 2008, special issue V 7.
13. Lupyan, .. and Savorsky, V.P., Basic Products of ERS Data Processing Sovr. Probl. Dist. Zondir. Zemli Kosm, 2012, vol. 9, no. 2.
14. Ris, U.G., Osnovy distantsionnogo zondirovaniya (Remote Sensing Basics), oscow: Tekhnosfera, 2006.
15. Chandra, .. and Gosh, G.S., Distantsionnoe zondirovanie i geograficheskie informatsionnye sistemy (Remote Sensing and Geographic Information Systems), oscow: Tekhnosfera, 2008.
16. Vygodskaya, N.N. and Gorshkova, I.I., Teoriya i eksperiment v distantsionnykh issledovaniyakh rastitelnosti (Theory and Experiment in Vegetation Remote Sensing), Leningrad: Gidrometeoizdat, 1987.
17. Vinogradov, B.V., Aerokosmicheskii monitoring ekosistem (Ecosystem Aerospace Monitoring), oscow: Nauka, 1984.
18. Obukhov, A.I. and Orlov, D.S., Spectral Reflectance of the Main Types of Soils and Possibilities of Using Diffuse Reflection in Soil Studies, Pochvoved., 1964, no. 2.
19. Rachkulik, V.I. and Sitnikova, .V., Otrazhatelnye svoistva i sostoyaniya rastitelnogo pokrova (Reflective Properties and States of Vegetation Mantle), Leningrad: Gidrometeoizdat, 1981.
20. Fedchenko, P.P. and Kondratev, .Ya., Spektralnaya otrazhatelnaya sposobnost nekotorykh pochv (Spectral Reflectance of Some Types of Soil), Leningrad: Gidrometeoizdat, 1981.
21. Karmanov, I.I., Spektralnaya otrazhatelnaya sposobnost i tsvet pochv kak pokazateli ikh svoistv (Spectral Reflectance and Color of Soils as Significatives of Their Properties), oscow: Kolos, 1974.
22. Andronikov, V.L., Aerokosmicheskie metody izucheniya pochv (Aerospace Methods of Soil Study), oscow: Kolos, 1979.
23. Afanaseva, T.V., Ispolzovanie aerometodov pri kartirovanii i issledovaniyakh pochv (Using Aeromethods in Mapping and Studying of Soil), oscow: MGU, 1965.
24. Chaban, L.N., Vecheru, G.V., and Gavrilova, T.S., Study of Possibilities of Vegetation Mantle Classification by Hyperspectral Images in Thematic Processing of Remote Sensing Data Packages, Trudy MFTI, 2009, vol. 1, no. 3.
25. Cherepanov, .S., Vegetation Indices, Geomatika, 2011, no. 2.
26. Kornienko, S.G., Evaluation of Scales of Vegetation Mantle Transformations on the Territory of the Tazovsky Peninsula According to the Data of NOAA Satellite, Sovr. Probl. Dist. Zondir. Zemli Kosm., 2012, vol. 9, no. 2.
27. Kornienko, S.G., Yakubson, K.I., and Maslennikov, V.V., Study of Transformations of Natural Complexes in Oil-and-Gas Bearing Regions of Permofrost According to the Data of Orbital Survey, Nauka Tekhn. Gaz. Prom., 2005, no. 3.


V. I. Cheskidov and G. D. Zaitsev

The article focuses on the issues of higher efficiency and competitiveness of the coal mining industry benefiting from advanced processing of coal. The Siberian reserves of coal ranked in a wide range allow heat energy and electric power generation, and the ample stock of coal products at a high added value.

Coal deposits in Siberia, coal conversion and multipurpose utilization

1. Ibragimova, N.A. and Shchadov, M.I., Science-Based Innovation Strategy for Coal Industry, Ugol, 2006, no. 1.
2. Cheskidov, V.I., Performance Potential of the Coal Strip Mining in the East of Russia, Journal of Mining Science, 2007, vol. 43, no. 4, pp. 429435.
3. Markova, V.M. and Churashov, V.N., Obogatitsya uglem (Making Rich with Coal), Moscow: Rosinformugol, 2011.
4. Krapchin, I.P. and Kuzmina, T. I., Technical Capacity and Economic Effect of the Short Term Expansion of Coal Application Fields and Trends, Ugol, 2011, no. 6.
5. Grachev, I.D. and Nekrasov, S.A., Innovation-Susceptible EnvironmentBasis for the Sustained Development of Coal Industry, Ugol, 2013, no. 1.
6. Coal App0lication Fields. Rosugol Co. Available at: http://www.roscoal.ru/content/ press-centr/informaciya-dlya-vas/oblasti-primeneniya-uglya.
7. Put uglya (Route of Coal), Ekspert. Available at: www.rosugol.ru. 05.06.2013.
8. Kuzmina, T.I., Innovative Development of Coal Industry in Russian Federation Based on Technology Potential of Deeper Coal Conversion, Dr. Economics Dissertation, Moscow, 2012.
9. Analiz problem i razrabotka tekhnologii kompleksnogo konkurentosposobnogo energotekhnologicheskogo ispolzovaniya uglya: otchet po integratsionnomu proektu SO RAN no. 94 (Problem Analysis and the Development of Multipurpose Competitive Power-Technology-Aimed Utilization of Coal: Report on Integration Project no. 94, SB RAS), Novosibirsk, 2008.
10. Sposob polucheniya guminovykh udobrenii (Humic Fertilizer Production Method). Available at: http://ru-patent.info.12.
11. Mikhalev, I.O. and Islamov, S.R., Power-Technology-Aimed Production Based on Partial Gasification of Low-Rank Coal, Proc. 8th Int. Conf. Solid Fuel Combustion, Novosibirsk, 2012.
12. V Kemerovskoi oblasti nachal rabotu innovatsionnyi ugolno-tekhnologicheskii kompleks (Innovative Coal Processing Plant Opens in the Kemerovo Region). Available at: forsmi.ru. 23.08.10.
13. SUEK nachal proizvodstvo polukoksa (SUEK Branches out into Low Temperature Coal Production). Available at: www.mnr.gov.ru.
14. Karpov, E.G., WaterCoal Fuel is the Technology of the Future, Energet. Prom. Ross., 2007, no. 5.
15. Arbuzov, S.I., Geochemistry of Rare Elements in Central Siberia Coal, Dr. Geology and Mineralogy Dissertation, Tomsk , 2005.
16. Galperin. A.M., et al., Osvoenie tekhnogennykh massivov na gornykh predpriyatiyakh (Development of Waste Accumulations at Mines and Processing Plants), Moscow: Gornaya kniga, 2012.
17. Kozhukhovsky, I.S., Problems and Prospects for Power Coal Market in Russia, Proc. 8th Annual Summit on Coal in Russian and CIS Countries, Moscow, 2013.


L. A. Samatova, V. I. Ryaboi, and E. D. Shepeta

The flotation properties of new dialkyldithiophosphates (BTF-163, BTF-175) are compared with the standard basic Aeroflot reagent IMA-I413 and butyl xanthate during flotation of scheelitesulfide ore. The selectivity of the test Aeroflot reagents in separation of chalcopyrite, magnetic pyrite, pyrite and arsenopyrite is illustrated in the article together with the option of enhanced extraction of copper and noble metals with the reduced arsenic content of the copper concentrate. The best results are obtained with BTF-163 that is recommended to industrial testing.

Scheelitesulfide ore, chalcopyrite, arsenopyrite, gold, silver, flotation, selective collecting agents, xanthate, Aeroflot reagents

1. Sorokin, M.M., Flotatsionnye metody obogashcheniya. Khimicheskie osnovy flotatsii: ucheb. posobie (Flotation Methods. Chemical Basics of Flotation: Educational Aid), Moscow: MISiS, 2011.
2. Abramov, A.A., Design Principles of Selective Collecting Agents, Journal of Mining Science, 2011, vol. 47, no. 1, 109121.
3. Ignatkina, V.A., Bocharov, V.A., and Tubdenova, B.T., Combinations of Different-Class Collectors in Sulphide-Ore Flotation, Journal of Mining Science, 2010, vol. 46, no. 1, pp. 8288.
4. Ryaboi, V.I., Golikov, V.V., Shenderovich, V.A., and Streltsyn, V.G., Selective Collecting Agent Based on Sodium Diisobutyl Dithiophosphate for SulfideArsenic Ore, Obog. rud, 1997, no. 3.
5. Ryaboi, V.I., Kretov, V.P., and Smirnova, E.Yu., Use of Dialkyldithiophosphates in Sulfide Ore Flotation, CIS Dressers Congress Proc., vol. 11, Moscow: Ruda metally, 2013.

G. I. Khanturgaeva and V. G. Shiretorova

The article presents aluminum silicate potassium mineralsynnyrite, named after the Synnyr Ridge where this alkaline rock occursand composition and properties of the mineral. It is shown that synnyrite has complex composition, with the rock-forming minerals of potassic feldspar and kalsilite. The authors have developed the advanced processing flowsheet for synnyrite.

Synnyrite, potassium feldspar, kalsilite, nepheline, alumina, aluminum potassium sulphate, agglomeration, acid leaching

1. Vladykin, E.V., SynneritePromising Al-K-SiO2 Ore Type and Its Deposits, Russ-Sci.-Pract. Conf. Proc. New and Nonstandard Mineral Deposits in Transbaikalia, Ulan-Ude: EKOS, 2010.
2. Sizyakov, V.M., State-of-the-Art and Challenges in the Aluminum Industry in Russia in the Transition Economic Period (Review and Analysis), Tsv. Metally, 2000, nos. 11 and 12.
3. Panina, L.I., Siberian Synnerite: Basis for Development, Region: Ekon. Sotsiol., 1997, no. 3.
4. Andreev, G.V., Petrologiya formatsii kalievykh nefelinovykh i shchelochnykh mestorozhdenii (Petrology of Potassium Nepheline and Alkaline Deposits), Novosibirsk: Nauka, 1981.
5. Manvelyan, M.G., Khimiya i tekhnologiya glinozema (Chemistry and Technology of Alimina), Erevan: ArmSNKh, 1964.
6. Bukhovets, V.G. and Sazhin, B.S., Decomposition of Aluminum Silicates in SodiumPotassium Acid Solutions, Khimiya i tekhnologiya glinozema (Chemistry and Technology of Alimina), Novosibirsk: Nauka, 1971.
7. Ponomarev, V.D., Sazhin, V.S., and Ni, L.P., Khimicheskii shchelochnoi sposob pererabotki alyumosilikatov (Chemical Alkali Treatment of Aluminum Silicates), Moscow: Metallurgiya, 1964.
8. Abramov, V.Ya., Alekseev, A.I., and Badalyants, Kh.A., Kompleksnaya pererabotka nefelino-apatitovogo syrya (Integrated Processing of NephelineApatite Raw Material), Moscow: Metallurgiya, 1990.
9. Kornevsky, A.A., Avakyan, Z.A., Karavaiko, G.I., Balashova, G.G., Kuznetsov, V.P., and Pauker, V.I., RF patent no. 1606531 RU, Byull. Izobret., 1990, no. 42.
10. Yusupov, T.S., Koroleva, S.M., and Shumskaya, L.G., Basic Trends in Synnerite Processing, Russ. Conf. Industrial Development in Siberia: Mineral Resource Industry and Its Material Supply in Siberia, Novosibirsk: IGD SO RAN, 1986.
11. Matveev, V.A., Phosphoric Acid Treatment of Nepheline Concentrate, Khim. Tekhnol., 2008, no. 7.
12. Zakharov, D.V., Zakharov, K.V., Matveev, V.A., and Maiorov, D. V. RF patent no. 2179527 RU, Byull. Izobret., 2002, no. 5.
13. Zakharov, V.I., Matveev, V.A., Maiorov, D.V., and Zakharov, K.V., New Trends in Integrated Sulphuric Acid Treatment of Nepheline, Int. Sci.-Pract. Conf. Proc. Nonferrous Metal Metallurgy. Problems and Prospects, Moscow: MISiS, 2009.
14. Gorbunova, E.S., Zakharov, V.I., Fedorov, S.G., et al., RF patent no. 2372290 RU, Byull. Izobret., 2008, no. 42.
15. Rimkevich, V.S., Malovitsky, Yu.N., Demyanova, L.P., Vorobev, Yu.A., and Belov, R.V., Investigation of Integrated Processing of NephelineBauxite Ore in the Far East of Russia, Tikhooken. Geolog. , 2006, vol. 25, no. 3.
16. Yanishevsky, F.V., Dzikovich, K.A., Kuznetsov, V.P., Pauker, V.I., Balashova, G.G., and Panitkin, V.A., RF patent no. 1188152 RU, Byull. Izobret., 1985, no. 40.
17. Belov, N.V., Kristallokhimiya silikatov s krupnymi kationami (Crystallochemistry of Silicate with Large Cations), Moscow: AN SSSR, 1961.
18. Nikiforov, K.A. and Revnivtsev, V.I., Napravlennye prevrashchenia mineralov (Guided Transformation of Minerals), Novosibirsk: Nauka, 1991.
19. Zhidkov, A.Ya., Ushakov, A.A., and Khrustalev, V.K., Kalyuminskoe Synnyrite DepositThe First Ultra-Potassium Alumina Deposit of the Synnyr Rock Mass, Problemy khozyaistvennogo osveoeniya zony BAMa (Problems of Development in the BaikalAmur Trunk Line Area), 1981.
20. Konstantinova, K.K., Nikiforov, M.V., and Mokhosoev, M.V., USSR Authors Certificate no. 142193, Byull. Izobret, 1988, no. 33.

A. N. Khatkova, V. I. Rostovtsev, K. K. Razmakhnin, and V. N. Emelyanov

It has been found that accelerated electrons have great influence on strength properties of zeolite-containing rocks, and on their post-grinding grain-size composition and the degree of unlocking, which intensifies further processing. The authors illustrate potentiality of reducing the content of ferruginous admixture in zeolite products: from 3.14 to 0.36% for zeolite-containing rocks from Shivyrtuiskoe deposit and from 11.2 to 0.12% for chabasite-containing basaltic andesite from Talan-Gozagorskoe deposit.

Mineral raw material, East Transbaikalia zeolites, accelerated electron treatment, mineral unlocking, process efficiency

1. Chanturia, V.A., Bunin, I.Zh., Ivanova, T.A., et al., Intensification of Dressing Processes for Zeolite-Containing Rocks in the East Transbaikalia, 7th CIS Dressers Cong. Proc., Moscow, 2009.
2. Bochkarev, G.R., et al., Prospects of Electron Accelerators Used for Realizing Effective Low-Cost Technologies of Mineral Processing, Proc. 20th Int. Mineral Processing Cong., Clausthal-Zellerfeld, GDMB, 1997, vol. 1.
3. Kondratev, S.A., Kotova, O.B., and Rostovtsev, V.I., Interfaces of Grains in Preparation and Processing of Rebellious Minerals and Mining-and-Processing Waste: Quantum-Mechanics Conceptualization, Izv. Komi NTs UrO RAN, 2010, no. 4.
4. Rostovtsev, V.I., Theoretical and Practical Basis of Energy Deposition in Mineral Mining and Processing, 7th Int. Sci.-Pract. Conf. Proc. Advanced Processing Technologies and Equipment for Metal and Nonmetal Ore, Novosibirsk, 2010.
5. Rostovtsev, V.I., Development of Enabling Technologies of Radiation and RadiationThermal Effect to be Used in Rebellious Mineral Processing and Dressing, Plaksins Lectures2011, Moscow: IPKON RAN, 2011.
6. Rostovtsev, V.I., Theoretical and Practical Principles of Using Electrochemical and Radiation (Accelerated Electrons) Effects in Mineral Preparation and Processing, Vestn. ChitGU, 2010, vol. 8, no. 65.
7. Khatkova, A.N., Mineralogo-tekhnologicheskaya otsenka tseolit-soderzhashchikh porod Vostochnogo Zabaikalya (Mineralogical and Technological Assessment of Zeolite-Containing Rocks in the East Transbaikalia), Chita: ChitGU, 2006.
8. Bayulam V. D., Analysis and Estimation of Mineral Unlocking in Nonferrous Metal Ore Specimens during Dressing (In Terms of Complex Ore from Leninogorsky, Tishinsky and Kyzyl-Tashtygsky Deposits), Cand. Tech. Sci. Dissertation, Irkutsk, 1973.

P. L. Paleev, A. N. Gulyashinov, and I. G. Antropova

Based on the theoretical analysis and experimental tests of dearsenation of gold-bearing arsenopyrite ore in water steam atmosphere, the authors show that during bakeout of arsenopyrite with pyrite in the superheated water steam atmosphere, it is possible to remove arsenic in the form of sulfides and unlock noble metals.

Gold-bearing arsenopyrite, pyrite, bakeout, superheated water steam, thermodynamic modeling, kinetics

1. Isabaev, S.M., Sulfidizing Arsenic-Bearing Compounds and the Methods of Arsenic Removal from Nonferrous Metallurgy Concentrates and Middlings, Dr. Tech. Sci. Dissertation, Irkutsk, 1991.
2. Chanturia, V.A., Fedorov, A.A., and Matveeva, T.N., Assessment of Process Properties of Gold-Bearing Pyrites and Arsenopyrites from Various Ore Bodies, Tsv. Metally, 2000, no. 8.
3. Isabaev, S.M. and Kuzgibekova, Kh., Physicochemical Basis for Heterogeneous Interaction in FeAsS, CAsS, NiAsS, CuAsS Systems in the Nonequilibrium Sulfidization Conditions, Tsv. Metally, 2000, no. 4.
4. Sinyarev, G.B., Vatolin, N.A., Trusov, B.G., and Moiseev, G.L., Primenenie EVM dlya termodinamicheskikh raschetov metallurgicheskikh protsessov (Computerized Thermodynamic Calculation of Metallurgical Processes), Moscow: Nauka, 1982.
5. Eremin, E.N., Osnovy khimicheskoi kinetiki (Principles of Chemical Kinetics), Moscow: Vyssh. shk., 1976.
6. Rozovsky, A.Ya., Kinetika topokhimicheskikh reaktsii (Kinetics of Topochemical Reactions), Moscow: Khimiya, 1974.
7. Metodicheskie osnovy issledovaniya khimicheskogo sostava gornykh porod, rud i mineralov (Fundamentals and Procedures of Investigating Chemical Compositions of Rocks, Ores and Minerals), Moscow: Nedra, 1979.

     ( )
Rambler's Top100   @Mail.ru

. .. 
: 630091, , , , 54
: +7 (383) 205–30–30, . 100 ()
: +7 (383) 217–06–78
E-mail: mailigd@misd.ru
© . ..  , 2004–2020.